
SEVERAL NEW CHARACTERIZATIONS OF BANACH SPACES
CONTAINING �1

HASKELL P. ROSENTHAL*

Abstract. Several new characterizations of Banach spaces containing a subspace isomorphic
to �1, are obtained. These are applied to the question of when �1 embeds in the injective
tensor product of two Banach spaces.

Notations and terminology. All Banach spaces are taken as infinite dimensional, “sub-

space” means “closed linear subspace,” “operator” means “bounded linear operator.” If W

is a subset of a Banach space, [W ] denotes its closed linear span. c denotes the cardinal

of the continuum, i.e., c = 2ℵ0 ; this is also identified with the least ordinal of cardinality

c. For 1 ≤ p < ∞, �p
c denotes the family f of all scalar valued functions defined on c with

‖f‖p = (
∑

α<c |f(α)|p)1/p < ∞. Finally, we recall that a scalar-valued function defined on a

compact metric space K is called universally measurable if it is measurable with respect to the

completion of every Borel measure on K.

Throughout this paper, the symbols X,Y,Z,B,E shall denote Banach spaces. Ba X denotes

the closed unit ball of X. Recall that an operator T : X → Y is called Dunford-Pettis if T

maps weakly compact sets in X to norm compact sets in Y . Also, L(X,Y ) (resp. K(X,Y ))

denotes the space of operators (resp. of compact operators) from X to Y , L(X) = L(X,X),

K(X) = K(X,X). A bounded subset W of X∗ is said to isomorphically norm X if there exists

a C < ∞ such that

‖x‖ ≤ C sup
w∈W

|w(x)| for all x ∈ X .

In case C = 1 and W ⊂ Ba X∗, we say that W isometrically norms X. X
∨⊗Y , X

∧⊗Y

denote the injective, respectively projective, tensor products of X and Y . See [DU], [Gr2] for

terminology and theorems in this area.

Main results. Our first main result gives several equivalences for a Banach space to contain

an isomorph of �1. We have included many previously known ones, to round out the list; also,

we use some of them later on. As far as I know, the equivalences of 1. with the following are

new: 2, 3, 4, 6, 7, 8, 11, 12, 13, 14, 19. (Of course some of the implications were previously
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known or are obvious. Also, the same construction proves that 2, 3, 4 and 6 imply 1, but I

thought it useful nevertheless to list these explicitly.) For other equivalences, cf. [H1], [Hay],

[G1], Theorem II.3 of [G2], [Ro4], and several of the remarks following the proof of Theorem 1.

Theorem 1. Let X be given. Then the following are equivalent.

1. �1 is not isomorphic to a subspace of X.

2. Every integral operator from Y to X∗ is compact, for any Y .

3. Every integral operator from �1 to X∗ is compact.

4. Every integral operator on X∗ is compact.

5. Every integral operator from X to Y is compact, for any Y .

6. Every integral operator from X to X∗ is compact.

7. Every operator from L1 to X∗ is Dunford-Pettis.

8. Every Dunford Pettis operator from X to Y is compact, for arbitrary Y .

9. Every w∗-compact subset of X∗ is the norm-closed convex hull of its extreme points.

10. If K is a weak∗-compact subset of X∗ which isomorphically norms X, then [K] = X∗.

The remaining equivalences assume that X is separable.

11. Every unconditional family in X∗ is countable.

12. Every unconditional family in X∗ has cardinality less than c.

13. L(X∗, �∞) has cardinality c.

14. L(X∗) has cardinality c.

15. X∗∗ has cardinality c.

16. X∗∗ has cardinality less than 2c.

17. If K is a weak∗-compact subset of X∗ and (xn) is a bounded sequence in X, then setting

x̂n(k) = k(xn) for all k and n, any point-wise cluster point of (x̂n) belongs to the first

Baire class on K.

18. There exists an isomorphically norming w∗-compact subset K of X∗ so that if (xn) is

as in 17, then (x̂n) has a point-wise cluster point which is universally measurable on

K.

19. There exists a K as in 18 so that if (xn) is as in 17, the cardinality of the set of

point-wise cluster points of (x̂n) on K, is less than 2c.

The implications 7 ⇒ 1, 12 ⇒ 1 follow quickly from a classical theorem of Pe�lczyński [P],

and the second of these does not require the separability of X. We prove a generalization of

Pe�lczyński’s result in the Appendix.
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After proving Theorem 1 and discussing some complements, we apply it in some detail to

the question of when �1 embeds in the injective tensor product of two Banach spaces.

Proof. 1 ⇒ 2. Let T : Y → X∗ be an integral operator. Thus there exists a probability

space (Ω,S, μ) and operators U : Y → L∞(μ) and V : L1(μ) → X∗ such that the following

commutative diagram holds

(1)

L∞(μ) i−−−−→ L1(μ)�⏐⏐U

⏐⏐�V

Y
T−−−−→ X∗

Here, i : L∞(μ) → L1(μ) denotes the canonical injection. Suppose T is not compact. Then

there exists a bounded sequence (yn) such that (Tyn) has no convergent subsequence. Then

(as is standard), after passing to a subsequence if necessary, we may assume that there is a

δ > 0 so that

(2) ‖Tyn − Tym‖ ≥ δ for all n �= m .

Since i is weakly compact, so is T ; so again after passing to a subsequence if necessary, we may

assume that (Tyn) converges weakly. But now if we consider the sequence (zn) defined by

(3) zn = y2n − y2n−1 for all n ,

then (zn) is also bounded of course, and

(4) Tzn → 0 weakly as n → ∞ , and ‖Tzn‖ ≥ δ for all n .

Thus it follows by the Hahn-Banach theorem that we may choose a sequence (xn) in the unit

ball of X such that

(5) |(Tzn)(xn)| ≥ δ

2
for all n .

Now by the �1-Theorem [Ro1], (xn) has a weak-Cauchy subsequence, so let us just assume

that (xn) is itself weak-Cauchy (note that obviously (5) holds for subsequences (z′n, x′
n) of the

pair (zn, xn)).

But now it follows that we may choose n1 < n2 < · · · such that

(6) |Tznk+1
(xnk

)| <
δ

4
for all k .

Indeed, let n1 = 1; since Tzn → 0 w∗, we may choose n2 > n1 such that |Tzn2(xn1)| < δ
4 .

Having chosen nk, choose nk+1 > nk such that (6) holds. But now it follows that

(7) |Tznk+1
(xnk+1

− xnk
)| >

δ

4
for all k ,
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and

(8) xnk+1
− xnk

→ 0 weakly.

Thus finally, after just re-lettering everything we have that

(zn) is a bounded sequence in Y , (xn) and (Tzn) both(9)

converge to zero weakly, and (5) holds for some δ > 0.

Now regarding X ⊂ X∗∗, we may thus write that

(10) |〈Tzn, xn〉| = |〈T ∗xn, zn〉| ≥ δ

2
for all n .

But T ∗ is also integral, and in fact admits the factorization

(11)

L∞(μ) i−−−−→ L1(μ)�⏐⏐V ∗
⏐⏐�Ũ

X∗∗ T ∗−−−−→ Y ∗

where Ũ = U∗ | L1(μ), L1(μ) regarded as contained in L1(μ)∗∗ = (L∞(μ))∗.

But finally, since L∞(μ) has the Dunford-Pettis property and Ũ i is weakly compact and

V ∗xn → 0 weakly,

(12) ‖T ∗xn‖ = ‖ũiV ∗(xn)‖ → 0 as n → ∞ .

Of course since (zn) is bounded, this contradicts (10).

2 ⇒ 3, 2 ⇒ 4, and 2 ⇒ 6 are trivial.

Next, we show that not 1 ⇒ not 3, not 4, and not 6, establishing the equivalence of 1, 2,

3, 4, and 6. We shall need the following basic fact concerning integral operators: If Y ⊂ Z,

B is complemented in B∗∗, and T is an integral operator from Y to B, then T extends to an

integral operator from Z to B. To see this, choose a probability measure space (Ω,S, μ) and

operators U : Y → L∞(μ) and V : L1(μ) → B so that the following diagram commutes:

L∞(μ) −−−−→
i

L1(μ)�⏐⏐U

�⏐⏐V

Y −−−−→
T

B

(where i is the canonical “identity” map). Then since L∞(μ) has the Hahn Banach extension

property, we may choose an operator Ũ : Z → L∞(μ) extending U , (with ‖Ũ‖ = ‖U‖). Thus

V iŨ is an integral operator extending T , proving our assertion.

Now suppose �1 embeds in X. Then by a theorem of Pe�lczyński [P]

(13) (C([0, 1]))∗ embeds in X∗ .
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(See the Appendix for a more general result.)

Thus in particular,

(14) L1 embeds in X∗ .

Let Q : �1 → C[0, 1] be a quotient map, and let i : C[0, 1]) → L1 be the canonical “identity”

map and also let U : L1 → X∗ be an isomorphic embedding.

Then T = UiQ is a non-compact integral operator from �1 to X∗, proving not 3. But if we

let Y be a subspace of X and V : Y → �1 a surjective isomorphism, then the map S = TV is a

non-compact integral operator from Y to X∗, and so has an integral operator extension from

X to X∗, proving not 6. Finally, let Z be a subspace of L1 isometric to �1, and A : Z → �1 a

surjective isometry. Then TA is a non-compact integral operator from Z to X∗, and so has an

integral operator extension from X∗ to X∗ by the basic fact above, proving not 4.

2 ⇒ 5. Let T : X → Y be an integral operator. Then T ∗ : Y ∗ → X∗ is also integral. Hence

T ∗ is compact, so T is compact. (The result that 1 ⇒ 5 follows from a result due to Pisier;

see remark 4 below.)

5 ⇒ 6 is trivial.

1 ⇒ 7. Suppose to the contrary that T : L1 → X∗ is a non Dunford-Pettis operator. It

follows that we may choose a sequence (fn) in L1 so that fn → 0 weakly but ‖Tfn‖ �→ 0.

Therefore we may choose a subsequence (f ′
n) of (fn) so that for some δ > 0,

(15) ‖Tf ′
n‖ > δ for all n .

For each n, choose xn ∈ X with ‖xn‖ = 1 and

(16) |〈Tf ′
n, xn〉| > δ .

By the �1-Theorem, by passing to a further subsequence if necessary, we may assume that (xn)

is a weak-Cauchy sequence. But then it follows that

(17) (T ∗xn) is a weak Cauchy sequence in L∞

(where we regard X as canonically embedded in X∗).

Since L1 has the Dunford-Pettis property, it follows that

(18) |〈f ′
n, T ∗xn〉| → 0 as n → ∞ ,

which contradicts (16). (A Banach space B has the Dunford-Pettis property if every weakly

compact operator T : B → Y is Dunford-Pettis, for all Y . By fundamental results of

Grothendieck [G1], this is equivalent to: (bn) weakly null in B, (fn) weakly null in B∗ im-

plies fn(bn) → 0 as n → ∞. It is then a standard exercise to show that in fact if (bn) is weakly

null and (fn) is weak-Cauchy, still fn(bn) → 0 as n → ∞.)
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Not 1⇒ not 7. Since L1 is isomorphic to a subspace of X∗ when 1 fails, this is immediate:

An (into) isomorphism T : L1 → X∗ is obviously not Dunford-Pettis.

1 ⇒ 8. Let (xn) be a bounded sequence in X. Choose (by the �1-Theorem) (x′
n) a weak

Cauchy subsequence of (xn); then given (ni) and (mi) strictly increasing sequences of positive

integers, (x′
ni

− x′
mi

) is weakly null, and hence by hypothesis

‖T (x′
ni

− x′
mi

)‖ = ‖Tx′
ni

− T ′xmi‖ → 0 as i → ∞ .

This implies (Tx′
n) is a Cauchy sequence in Y , so it converges since Y is complete; thus T is

compact.

8 ⇒ 5. Integral operators are Dunford-Pettis operators because L∞(μ)-spaces have the

Dunford-Pettis property and integral operators factor through the “identity” map i : L∞(μ) →
L1(μ), for some probability measure μ; of course i is weakly compact.

1 ⇒ 9. Suppose to the contrary that (uα)α<w1 is an uncountable unconditional family in

X∗; let U be the norm closure of its linear span. Assume ‖uα‖ = 1 for all α; letting (u∗
α) be

the functions in U∗ biorthogonal to (uα), choose K so that ‖uK
α ‖ ≤ K for all α. Now we have

the following fundamental claim:

(19) Given f ∈ U∗, then Wf = {α : f(uα) �= 0} is countable.

If this were false, say then f = U∗, ‖f‖ = 1, and Wf is countable. Then we may pass to an

uncountable subset Γ of Wf such that there exists a δ > 0 so that

(20) |f(uα)| ≥ δ for all α ∈ Γ .

But now a standard argument shows that

(21) (uα)α∈Γ is equivalent to the natural basis of �1(Γ) .

Thus �1(Γ) embeds in X∗, which implies �1 embeds in X, by a result of Pe�lczyński [P], Hagler

[H1], a contradiction.

1 ⇒ 9. This is due to R. Haydon [Hay]. For X separable, this had previously been proved

by E. Odell and myself [OR].

9 ⇒ 10. If K satisfies the hypothesis of 10, so does K̃ = {αk : α is a scalar, |α| = 1,

k ∈ K}. But then it follows that the w∗-closed convex hull W of K̃ has non-empty interior,

and hence since then also Ext W ⊂ K̃ and 9 implies W is the norm closed convex hull of

Ext W , [K] = [K̃] = X∗.

10 ⇒ 1. This follows from a result of G. Godefroy [G1]. Indeed, assume that �1 embeds in

X. Then it is proved in [Gr1] that there exists an equivalent norm ||| · ||| on X such that if K

denotes the w∗ closure of the extreme points of the ball of X∗ in the dual norm induced by
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||| · |||, then [K] �= X∗. But of course then K is an isomorphically norming w∗-compact subset

of X∗ in its original norm, proving that 10 does not hold. There is a minor point here that

requires explanation, however. The cited result of Godefroy’s requires the fundamental case

where X = �1 itself, for the proof. But the argument given in [G1] is only valid for the case of

complex scalars. The result for real scalars may be deduced from the work in [G1] as follows:

First, to avoid ambiguity, let �p
R
, resp. �p

C
, denote �p for real scalars, resp. for complex scalars,

p = 1 or ∞. It is proved in [G1] that for complex scalars, there exists an equivalent norm ||| · |||
on �1

C
so that if K is as above, and Y is the closed linear span of K over the complex scalars,

then there exists an infinite subset M of N with infinite complement so that

(22) inf{|y(n) − y(n′)| : n ∈ M, n′ ∈ N ∼ M} = 0 for all y ∈ Y .

Now let ||| · |||∗ be the dual norm induced on �∞
C

, and just regard (�∞
C

, ||| · |||∗) as a real Banach

space. Now if we take the standard norm on �∞
C

and regard this as a real Banach space, we

obtain �∞
R

⊕ �∞
R

under the norm

(23) ‖(aj) ⊕ (bj)‖ = sup
j

√
a2

j + b2
j for (aj), (bj) ∈ �∞R

which is obviously equivalent to the standard norm on �∞
R
⊕ �∞

R
, which of course is isometric to

�∞
R

. Then it follows also that the norm ||| · |||∗ must be equivalent to the standard norm ‖·‖∞ on

�∞
R
⊕�∞

R
(where obviously we take the isomorphism (aj +ibj) → ((aj), (bj)) for (aj +ibj) ∈ �∞

C
).

Now let c00 denote the space of all sequences of reals which are ultimately zero. Define a

norm ||| · ||| on c00 ⊕ c00 by

(24) (aj) ⊕ (bj) = sup
{
|
∑

(αjaj + βjbj)| : |||(αj) ⊕ (bj)|||∗ = 1
}

.

It follows easily that ||| · ||| is equivalent to the �1-norm on �1
R
⊕ �1

R
. Moreover, we have that a

bounded sequence (fn) in �∞
C

converges in the w∗ topology on �∞
C

induced by �1
C

iff

(25) lim
bn→∞

fn(j) exists for all j

iff

(26) lim
n→∞Re fn(j) and lim

n→∞ Im fn(j) exist for all j

iff

(27) {(Re fn ⊕ Im fn)∞n=1 converges in the w∗-topology on �∞R ⊕ �∞R } .

It follows that the w∗-topology on �∞
C

is the same as that on �∞
R

⊕ �∞
R

, and hence the unit

ball of (�∞
R

⊕ �∞
R

, ||| · |||∗) is compact in the w∗-topology; thus by the bipolar theorem, that

ball is precisely the dual ball of (�1
R
⊕ �1

R
, ||| · |||); hence the set K defined above is exactly the

same as that defined for the real scalars case above. Finally, it follows that if YR denotes the
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norm closed linear span of K over real scalars, then we have that if (aj)∞j=1 ⊕ (bj)∞j=1 ∈ YR,

(aj + ibj)∞j=1 ∈ Y , and hence by (22), we obtain that

(28) inf{max{|an − a′n|, |bn − b′n|} : n ∈ M, n′ ∈ N ∼ M} = 0

which obviously implies that YR �= �∞
R

⊕ �∞
R

. Thus it follows X = (�1
R
⊕ �1

R
, ||| · |||) is isomorphic

to �1
R

but for K as defined above, the w∗-closed convex ball of K equals Ba X∗ but [K] �= X∗,

completing the proof for real scalars.

11 ⇒ 12. This is trivial.

It follows from the main result in [OR] that every element of X∗∗ is the limit of a weak

Cauchy sequence in X, which yields 15. (1 ⇒ 15 is also given in [OR].)

1 ⇒ 13. It is easily seen that

(29) cardL(X∗, �∞) ≥ c .

Indeed, just fix z ∈ �∞, z �= 0, x ∈ X, x �= 0, and note that the operator T on X∗ defined by

T (x∗) = x∗(x)z is thus non-zero; hence

(30) r → rT is a 1–1 map of R into L(X∗, �∞) .

Thus it remains to prove

(31) cardL(X∗, x) ≤ c .

Now since Ba �1 is w∗-dense in Ba(�∞)∗ by Goldstein’s Theorem. then

(32) There exists a countable subset D of Ba �∞ which is weak*-dense in it.

But then it follows that if T ∈ L1(X∗, �∞), T ∗ is w∗-continuous and is thus determined by its

values on D. Thus we deduce that

(33) cardL(X∗, �∞) ≤ card(X∗∗)D = cℵ0 = c .

13 ⇒ 14 is obvious since the dual of any separable Banach space is isometric to a subspace

of �∞.

14 ⇒ 15 is trivial since X∗∗ is isometric to a subspace of L(X∗).

15 ⇒ 16 is trivial.

1 ⇒ 17. It follows by the �1-theorem that given (x̂ni) a subsequence of (x̂n), then (xni) has

a weak-Cauchy subsequence, which implies that (x̂ni) has a subsequence pointwise convergent

on K. Now the results of [Ro2] prove the conclusion of 17 (and also imply, by the way, that

any pointwise cluster point of (x̂n) is the limit of a pointwise convergent subsequence of (xn)).
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17 ⇒ 18. Let K be the unit ball of X∗. Then of course (x̂n) has a pointwise cluster point

on K, which is just an element of X∗∗ restricted to K. This is a Baire-one functions on K by

[OR], and so of course is Borel measurable and hence universally measurable.

17 ⇒ 19. The cardinality of the class of Baire-one functions on K equals c < 2c.

18 ⇒ 1. It suffices to prove that any bounded sequence (xn) in X has a subsequence (xni)

so that (x̂ni) converges pointwise on K. For then, it follows by the Hahn-Banach, Riesz-

representation, and bounded convergence theorems that (xni) is a weak-Cauchy sequence, and

so 1 holds. But if this is not the case, then we find a bounded sequence (xn) in X such that

(x̂n) has no pointwise convergent subsequence on K. It now follows by a theorem of Bourgain-

Fremlin-Talagrand [BFT] that (x̂n) has a subsequence, none of whose pointwise cluster points

are universally measurable on K, thus contradicting 18. (For an alternate proof of the cited

result, see Theorem 3.18 in [Ro3].)

It remains to prove that 12, 16, and 19 imply 1. We shall prove the contrapositive implica-

tions instead. So we assume for the rest of the proof that �1 embeds in X and X is separable.

(We don’t need the separability assumption for the first two implications.)

�1
c is isometric to the space of atomic Borel measures on [0, 1], and so isometric to a subspace

of C[0, 1)∗. Thus by (8),

(34) �1
c is isomorphic to a subspace of X∗,

so 12 does not hold.

It also follows that 16 does not hold, for by (34), �∞c is isomorphic to a quotient space of

X∗∗, and hence

(35) card X∗∗ ≥ cc = 2c .

(These implications are of course known.)

Not 1 ⇒ Not 19. Let K be a w∗-compact isomorphically norming subset of X∗. Then it

follows again by the theorems cited in the proof of 18 ⇒ 1, that if (xn) is a bounded sequence

in X such that (x̂n) converges pointwise on K, then (xn) is a weak Cauchy sequence in X.

Thus there must exist some bounded sequence (xn) in X such that (x̂n) has no pointwise

convergent subsequence on K. Hence this implication follows (since obviously the family of

pointwise cluster points on K has cardinality at most 2c) from

Lemma 2. Let K be a compact Hausdorff space and (fn) be a bounded sequence of continuous

scalar-valued functions on K which has no pointwise convergent subsequence. Then the family

F of pointwise cluster points of (fn) on K has cardinality at least 2c.



10 HASKELL P. ROSENTHAL

Proof. We may obviously assume the fn’s are real valued since either the real or imaginary

parts of the fn’s have no pointwise convergent subsequence, and the real or imaginary part of

a pointwise cluster point of (fn) is also a pointwise cluster point of the real or imaginary parts

of the fn’s. By the proof of the �1-Theorem ([Ro1]; see also [Ro3]), there exists a subsequence

(f ′
n) of (fn) with the following property:

(∗) There exist real numbers r and δ with δ > 0 such that setting An = {k :

f ′
n(k) ≤ r − δ} and Bn = {k : f ′

n(k) ≥ r + δ}, then these are non-empty sets

for all n, such that ((An, Bn)) is a Boolean independent sequence; that is, if

one sets +An = An and −An = Bn, then for any infinite sequence (εj) with

εj = ±1 for all j,

(36)
n⋂

j=1

εjAj is non-empty for all n .

This implies

(37)
∞⋂

j=1

εjAj is non-empty,

since for all n, f ′
n is continuous, and thus An, Bn are closed and non-empty, and so (37) follows

by the compactness of K. Now let U be the family of all non-principal ultrafilters on N (cf.

[CN] for the definition and standard properties of ultrafilters). Then as is classical, U may be

identified the βN ∼ N, where βN denotes the Stone-Cěach compactification of N, and so by a

classical theorem in topology (cf. Theorem 2, page 132 of [E]),

(38) cardU = 2c .

(This is also explicitly given in 7.4 Corollary, page 146 of [CN].)

For each U ∈ U , define a function fU on K by

(39) fU (k) = lim
n∈U

f ′
n(k) for all k ∈ K .

Then as is standard, fU is a pointwise cluster point of (f ′
n) and hence of (fn). Thus to complete

the proof of the Lemma, it suffices to show that

(40) fU �= fV if u �= v , U, V ∈ U .

Given U �= V in u, choose M an infinite subset of N such that M ∈ U , M /∈ V . Then as

cofinite sets belong to any non-principal ultrafilter,

(41) N ∼ M
def= L is infinite and thus belongs to V .
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(The latter statement holds since M is infinite and M /∈ V .) Now define (εj) by

(42) εj = 1 if j ∈ M and εj = −1 if j ∈ L .

Let k be a point in
⋂∞

j=1 εjAj (such exists by (37)). Thus by definition of ((An, Bn))

(43) f ′
n(k) ≤ r − δ for all n ∈ M .

Now it follows that if UM = {M ∩ A : A ∈ U}, then UM is a non-principal ultrafilter on M ,

and

(44) fU (k) = lim
k∈uμ

f ′
n(k) .

Thus it follows by (43) that

(45) fU(k) ≤ r − δ .

By exactly the same reasoning, we obtain that

(46) fV (k) ≥ r + δ .

Thus (45) and (46) show fU �= fV , completing the proof of the Lemma, and thus the proof of

Theorem 1. �

Remarks.

1a. The equivalence we have used in the proof of 10 ⇒ 1 is actually quantitative. That is,

we have the following fact.

Proposition A. Given X and λ ≥ 1, the following are equivalent:

(i) There exists a weak*-compact λ-norming subset K of Ba X∗ so that [K] �= X∗.

(ii) There exists a norm ||| · ||| on X so that

‖ · ‖ ≤ ||| · ||| ≤ λ‖ · ‖ (‖ · ‖ the original norm)

with [K] �= X∗, where K is the w∗-closure of the extreme points of Ba(X∗, ||| · |||∗).

Proof. (i) ⇒ (ii): Let W = {αk : |α| = 1, k ∈ K}. Then W is also w∗-compact. Then it

follows by the geometrical form of the Hahn-Banach Theorem that if K̃ denotes the w∗-closed

convex hull of W , then

K̃ ⊂ Ba X ⊂ λBa K̃ ;

in turn, we then easily obtain a norm ||| · ||| on X satisfying the inequality in (ii) such that

K̃ = Ba(X∗, ||| · |||∗). But then it follows that Ext K̃ ⊂ W which implies (ii). (ii) ⇒ (i) is

immediate for K is then λ-norming. �

Now the arguments in [G1] yield
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Proposition B. There exists an absolute constant C so that if �1 embeds in X, there exists a

C-norming w∗-compact subset K of Ba X∗ with [K] �= X∗.

The question then arises:

Problem 1. If �1 embeds in X, is it so that given ε > 0, there exists a λ ≤ 1 + ε satisfying

(i) of Proposition A?

The delicate nature of the proof of 10 ⇒ 1 leads me to conjecture that the answer is

negative for X = �1 itself. Of course if so, it is natural to ask: What is the optimal value

of C in Proposition B? Now of course if X = C(K) for some uncountable compact metric

space, λ = 1 works. However λ = 1 does not work for X = �1. For then by the arguments

sketched above, we would have that the norm-closed linear span of the w∗-closure of Ba �∞

would be unequal to �∞. But standard arguments show that the norm-closed convex hull of

ExtBa �∞ = Ba �∞.

1b. Some interesting equivalences are also obtained in [G1], complementary to the above

discussion. The following notion is introduced there:

Definition. Let K be a non-empty closed bounded convex subset of X∗, and W ⊂ K. W is

called a boundary of K if for all x ∈ X, sup[Re(χx) | W ] is attained on W .

The following result is obtained in [G1], generalizing the theorem of [OR] that 9 ⇒ 1 for

separable X, and yielding an analogy of James’ famous characterization of weakly compact

convex sets.

Theorem. Assume X is separable. Then the following are equivalent.

(i) �1 does not embed in X.

(ii) for all w∗-compact subsets K of X∗, if W is a boundary of K, then K is the norm-closed

convex hull of W .

(iii) if K is a closed bounded convex subset of X∗ which is a boundary for itself, then K is

w∗-compact.

2. I am indebted to Welfeng Chen for a stimulating conversation concerning the implication

1 ⇒ 12.

3. Suppose X is separable and X∗ is non-separable. A remarkable result of Stegall yields

that then X∗ has a biorthogonal family of cardinality the continuum [S]. Since there are now

known many separable spaces X not containing �1 with X∗ nonseparable (cf. [AMP], [H2],

[J3], [K], [LS], [Ro5]), we cannot significantly weaken the unconditionality assertion in 11 and
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12. This same result incidentally shows that densX∗∗ = densX∗ = c; thus assuming �1 does

not embed in X, we obtain that all cardinal measures of the size of X∗, X∗∗, L(X∗) yield the

same result. (For a metric space M , densM denotes the least cardinality of a dense subset.)

4. The following essentially known result gives equivalences for the embedability of �1 in X

and the structure of p-absolutely summing operators on X, analogous to the equivalences 1.

through 4. of Theorem 1.

Theorem. Let X be given. The following are equivalent.

1. �1 does not embed in X.

2. For all Y and 1 ≤ p < ∞, every p-absolutely summing operator from X to Y is

compact.

3. Every 2-summing operator from X to �2 is compact.

4. Every 2-summing operator from X to X∗ is compact.

Proof. 1 ⇒ 2. This is due to G. Pisier (Corollary 1.7, part (iii) of [Pi]). For the sake of

completeness, we give the argument. Let T : X → Y be a p-absolutely summing operator.

By a fundamental theorem of Pietsch (cf., [LP] or Theorem 1.3 of [Pi]), there exists a regular

Borel probability measure μ on K = Ba X∗ endowed with the w∗-topology and a C < ∞ so

that

(a) ‖Tx‖ ≤ C(
∫
K |w(x)|p�μ(w))1/p for all x ∈ X.

Now let (xn) be a bounded sequence in X, and choose a weak-Cauchy subsequence (x′
n) by

the �1-Theorem. We claim that

(b) (Tx′
n) converges in the norm topology of Y .

To prove this, since Y is a Banach space, we employ the following elegant characterization of

Cauchy sequences, due to Pe�lczyński: It suffices to show that

(c) ‖Tx′
ni

− Tx′
mi

‖ → 0 as i → ∞ for all strictly increasing sequences (ni), (mi) of N.

But given such sequences, (xni −xmi) is a weakly null sequence in X. Now letting i : C(K) →
Lp(μ) be the natural injection and U : X → C(K) the canonical map given by: (Ux)(k) = k(x)

for all x ∈ X, k ∈ K, then since i is weakly compact and C(K) has the Dunford-Pettis property,

(d) ‖iU(x′
ni

− x′
mi

)‖ → 0 as i → ∞
But (a) yields that

(f) ‖T (x′
ni

− x′
mi

)‖ ≤ C‖iU(x′
ni

− x′
mi

‖Lp(μ) for all i.

2 ⇒ 3, 2 ⇒ 4 are trivial. Now suppose �1 embeds in X. Thus by Pe�lczyński’s theorem, (8)

holds, and since �2 embeds in L1, which thus embeds in X∗, it is obviously enough to show that
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condition 3 of the Theorem fails to hold. Now simply let T : �1 → �2 be defined by: Tej = bj

for all j, where ej is the �1-basis, (bj) the �2-basis. It follows that T is absolutely summing, by

Grothendieck’s fundamental theorem [G2] (although the direct proof of this elementary fact is

much simpler). Let Z be a subspace of X isomorphic to �1 and let S : Z → �1 be a surjective

isomorphism. It follows that TS is absolutely summing. Hence TS is 2-absolutely summing,

which implies TS is 2-integral and hence TS entends to a 2-integral operator V : X → �2. V

is thus 2-absolutely summing, but since T is not compact, neither is V . �

Comment . It thus follows that 1 ⇒ 5 of Theorem 1 can be deduced from the above Theorem,

since integral operators are asbolutely summing.

5. The proof of 6 ⇒ 1 yields an integral non-compact operator from �1 to L1 (and also

6 ⇒ 1 follows from this and Pe�lczyński’s theorem cited there). The following is a more natural

example of such an operator. Letting (en) be the �1 basis, define T by: Ten = sin 2πnx for all

n. T is obviously not compact. To see that T is an integral operator, define S : C[0, 1] → c0 by:

(Sf)n =
∫ 1
0 f(x) sin 2πnx dx for all n ∈ N . Then S is an integral operator, because if we define

V : L1 → c0 by : (V f)n =∈1
0 f(x) sin 2πnx for all n ∈ N , then S = V i, where i : C[0, 1] → L1

is the canonical map. Therefore S∗ is integral; it is easily verified that S∗ = T .

If K satisfies the hypothesis of 9, then if we renorm X by |||x||| = sup{|k(x)| : k ∈ K}, K now

isometrically norms (X, ||| · |||), and so also Ω = {αk : α is a scalar, |α| = 1, k ∈ K} isometrically

norms (X, ||| · |||) and is w∗-compact. Hence the w∗-closed convex hull of Ω equals D, the unit

ball of X∗ in ||| · |||∗, and moreover the extreme points of D are contained in Ω. Thus by 9, the

norm-closed convex hull of Ω = D, so of course [Ω] = [K] = X∗.

7. Results of Bourgain in [Bo1], [Bo2] yield the following remarkable result.

Theorem. Assume X is separable. Then the following are equivalent.

1. �1 does not embed in X.

2. Any closed bounded convex subset of X∗ with the Radon-Nikodym property (RNP) is

separable.

3. Any subspace of X∗ with the RNP is separable.

4. There does not exist a compact subset Kof E Ba X∗, the extreme points of Ba X∗,

such that K is homeomorphic to the Cantor set and the canonical map X → C(K) is

surjective.

5. There does not exist a subset of the extreme points of Ba X∗ equivalent to the basis of

�1
c.
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(Note that 3 ⇒ 1 follows from Pe�lczyński’s theorem and does not require the separability of

X, for �1
c has the RNP.) He then deduces in [Bo2] that if X is non-separable, E Ba X∗ is non-

separable in norm. (EW denotes the extreme points of W .) For if �1 is not isomorphic to a

subspace of X, X∗ = [E Ba X∗] by the result of Haydon [Hay]. If �1 embeds in X, then there is

a separable subspace Y of X so that card E Ba Y ∗ = c by 4 ⇒ 1 of the above Theorem, but as is

standard, every extreme pont of Ba Y ∗ lifts to an extreme point of Ba X∗, so card E Ba X∗ ≥ c.

The Theorem established by Bourgain in [Bo1] which gives 4 ⇒ 1, also yields the following

striking improvement of Pe�lczyński’s theorem cited in the proof of 12 ⇒ 1 of our Theorem 1.

If �1 embeds in X, X separable, then for all 1 > ε > 0, there exists a subset K of E Ba X∗

homeomorphic to the Cantor set, such that for all f ∈ (1 − ε)Ba C(K), there exists an x ∈ X

with ‖x‖ < 1 and f(k) = k(x) for all k ∈ K. It follows that for all ε > 0, E Ba X∗ has a

subset (1 + ε)-equivalent to the basis for �1
c.

8. Theorem 3.18 of [Ro3] yields the following result, strengthening the result in [BFT] used

in proving 18 ⇒ 1 of Theorem 1.

Theorem. Let K be a compact metric space and (fn) a bounded sequence in C(K) with no

pointwise convergent subsequence. Then there exists a subsequence (f ′
n) of (fn) and a Borel

probability measure μ on K such that no point-wise cluster point of (f ′
n) is μ-measurable.

It follows that we may replace the implications 18, 19 ⇒ 1 by the following stronger state-

ment: If �1 embeds in X (assumed separable) and K is a weak*-compact norming subset of X∗,

there exists a bounded sequence (xn) in X such that (x̂n) (as defined in 17) has 2c pointwise

cluster points on K, none of which are universally measurable.

Applying Lemma 2, we obtain from the Theorem

Corollary A. If (fn) satisfies the hypotheses of the Theorem, there exists a Borel probability

measure μ on K such that there is a set W of cardinality 2c, consisting of point-wise cluster

points of (fn), none of which are μ-measurable.

Here is another applcation, due to Stegall.

Corollary B. Let W be a weakly pre-compact subset of a Banach space. Then the closed

convex hull of W is weakly pre-compact.

(W is called weakly pre-compact of every sequence in W has a weak-Cauchy subsequence.)

Proof. It obviously suffices to prove that co W , the convex hull of W , is weakly pre-compact.

Any sequence in co W is contained in the convex hull of a countable subset of W , so we
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may assume w.l.g. W is separable. Note incidentally that any weakly pre-compact set is

bounded, since weak-Cauchy sequences are bounded by the uniform boundedness principle.

Thus, suppose that C < ∞, ‖w‖ ≤ C for all w ∈ W , and to the contrary, there exists

a sequence (fn) in co W with no weak-Cauchy subsequence. Now letting K = (Ba X∗, w∗)

and x̂(k) = k(x) for all x ∈ W and k ∈ K, (f̂n) ⊂ C(K) thus has no pointwise convergent

subsequence on K, and so by the above Theorem, choose μ a Borel probability measure on K

and (f ′
n) a subsequence of (fn) such that no point-wise cluster point of (f̂ ′

n) is μ-measurable.

Now letting i : C(K) → L1(μ) be the canonical map, it follows by the bounded convergence

theorem that i(W ) is a relatively compact subset of L1(μ). But then coi(W ) = icoW is also a

relatively compact set. So then, choose (f ′′
n) a subsequence of (f ′

n) such that (if̂ ′′
n) converges

in L1(μ), and finally choose (f̃n) a subsequence of (f ′′
n) such that (fn) converges μ-almost

everywhere, to a function g in L1(μ). But then any point-wise cluseter point of (̂̃fn) equals g

almost everywhere, and is hence μ-measurable; of course all such are point-wise cluster points

of (f̂ ′
n), a contradiction. �

Corollary C. �1 does not embed in X iff there exists a weakly precompact subset of X iso-

morphically norming X∗.

Proof. If �1 does not embed in X, W = Ba X is weakly precompact, by the �1-Theorem.

Suppose conversely W is a weakly precompact subset of X, isomorphically norming X∗. It

is easily seen that W̃
def= {αw : |α| = 1} is also weakly pre-compact and hence coW̃ , the

closed convex hull of W̃ , is weakly pre-compact by Corollary B. The Hahn-Banach Theorem

(geometrical form) implies coW̃ contains E Ba X for some ε > 0, showing that every bounded

sequence in X has a weak-Cauchy subsequence. �

It is interesting to compare the equivalences 1–3 of Theorem 1 with the following equiva-

lences, given in [DU] (see Theorem 8, page 175 of [DU]; 3 ⇒ 1 is due to Uhl and 1 ⇒ 3 is due

to Stegall).

Theorem. Let X be given. Then the following are equivalent.

1. X∗ has the Radon-Nikodym property (RNP).

2. Every integral operator from Y to X∗ is nuclear, for all Y .

3. Y ∗ is separable for all separable Y ⊂ X∗.

However this does not yield the sharp equivalence analogous to the one we obtain in 1 ⇔ 3

in Theorem 1.
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Problem 2. Let X be a separable Banach space. When does there exist an integral non-nuclear

operator on X∗?

Now if X∗ has the Radon-Nikodym property, then by the above Theorem, every operator

on X∗ is nuclear. But also, if X∗∗ has the RNP, then: T : X∗ → X∗ integral implies T ∗ :

X∗∗ → X∗∗ integral implies T ∗ is nuclear implies T is nuclear, since X∗ is contractively

complemented in X∗∗∗. Now if X∗ has the approximation property (ap) in addition, then

(again by Grothendieck’s results), (K(X))∗ = (X∗ ∨⊕X)∗ = X∗∗ ∧⊕X∗ isometrically. This is so

because Grothendieck’s results yield that (K(X))∗ = I(X∗), the space of integral operators

on X∗ (because X has the ap). But then in the case X∗∗ has the RNP, we also have that

the integral norm of T on X∗ equals the integral norm of T ∗∗, which equals the nuclear norm

of T ∗∗, which equals the nuclear norm of T ∗, which is then the same as its projective tensor

norm. Also, (X∗∗ ∨⊕X∗)∗ = L(X∗∗) isometrically. We may thus summarize this discussion as

follows.

Proposition 3. Let X be a Banach space such that X∗ has the ap and X∗ or X∗∗ have the

RNP. Then every integral operator on X∗ is nuclear, K(X)∗ = X∗∗ ∧⊕X∗ isometrically and

K(X)∗∗ = L(X∗∗) isometrically.

We show later on, however, that there exist separable Banach space X so that X∗∗ has the

metric approximation property, X and X∗ fail the RNP, yet still every integral operator on

X∗ is nuclear.

Remark. The above discussion also shows that given X and Y , then if X∗ or Y ∗ has the ap

and either X∗ or Y ∗ has the RNP, then (X
∨⊕Y )∗ = X∗ ∧⊕Y ∗ isometrically. A slightly weaker

result then this is due to Grothendieck ([Gr2]; see also [DFS]).

We now pass to a detailed discussion of the following problem:

Problem 3. Under what conditions on Banach spaces X and Y is it so that �1 embeds in

X
∨⊗Y , the injective tensor product of X and Y ?

We solve this problem, for separable Banach spaces X and Y such that X∗ or Y ∗ have

the bounded approximation property (bap), in Theorem 6 below. This also yields a partial

answer to Problem 2. (Of course under the ap assumption, the problem reduces to the study

of separable spaces anyway, because if e.g. X∗ has the bap, then we show in Lemma 9 that

given X0 a separable subspace of X, there exists a separable subspace X1, of X with X1 ⊃ X0

such that X∗
1 has the bounded approximation property. Thus if �1 embeds in X

∨⊗Y and X∗
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or Y ∗ have the bap, there must exist X1, Y1 separable subspaces of X and Y so that X∗
1 or Y ∗

1

has the bap and �1 embeds in X1

∨⊗Y1).

We shall freely use the standard (but rather non-trivial!) results concerning tensor products

of Banach spaces, due to Grothendieck [Gr2], as also exposed in [DU]. For Banach spaces X

and Y , I(X,Y ) denotes the space of integral operators from X to Y and N(X,Y ) the space

of nuclear operators from X to Y . For the definitions, including the norms, of these spaces,

see the above references.

Our next result provides as with sufficient conditions for �1 to not embed in X
∨⊗Y .

Corollary 4. Let X and Y be given Banach spaces, neither containing an isomorph of �1,

such that X∗ or Y ∗ has the RNP. Then �1 does not embed into X
∨⊗Y .

Proof. It obviously suffices to prove this for the case where X and Y are both separable. By

a result of Grothendieck, we also have that

(47) (X
∨⊗Y )∗ = I(X,Y ∗) = N(X,Y ∗)

(via trace duality). Furthermore,

(48) N(X,Y ∗) is isometric to a quotient space of X∗ ∧⊗Y ∗

which implies that

(49) [N(X,Y ∗)]∗ is isometric to a subspace of X∗ ∧⊗Y ∗ = L(X∗, Y ∗∗) .

Now assuming Y ∗ has the RNP, then Y ∗ is separable, (by [S]). But since Y ∗ is a separa-

ble Banach space, Y ∗∗ is isometric to a subspace of �∞, and hence by Theorem 1, part 11,

L(X∗, Y ∗∗) has cardinality c, and so we have proved that (X
∨⊗Y )∗∗ has cardinality c, using

(47)–(49). Thus �1 does not embed in X
∨⊗Y by Theorem 1, part 15 (i.e., by [OR]). �

We shall show later on that Corollary 4 does not solve problem 2. In fact, the following

consequence of the result of R. Haydon mentioned above is crucial for the solution.

Proposition 5. Let X and Y be Banach spaces such that �1 does not embed in X
∨⊗Y . Then

I(X,Y ∗) equals the closure of the finite rank operators from X to Y ∗ (endowed with the integral

norm on I(X,Y ∗).

Proof. Let K = {x∗ ⊗ y∗ : ‖x∗‖, ‖y∗‖ ≤ 1, x∗ ∈ X∗, y∗ ∈ Y ∗}. Then K is a w∗-compact

subset of Ba(X
∨⊗Y )∗ which isometrically norms X

∨⊗Y . By the argument given in the proof of

1 ⇒ 9 ⇒ 10 of Theorem 1, it follows from [Hay] that [K] = (X
∨⊗Y )∗ = I(X,Y ∗). This proves

Proposition 5. �
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Remarks. 1. For X and Y separable, Proposition 5 follows by Theorem 1, part 10.

2. Of course this result holds if we interchange X and Y in its statement, which is more

naturally given in the language of tensor products: For separable Banach spaces X and Y , if

�1 does not embed in X
∨⊗Y , then (X

∨⊗Y )∗ equals the closure of X ⊗ Y in the space of integral

bilinear forms on X∗ × Y ∗.

3. It is apparently an open problem if the nuclear and integral norms coincide or are

equivalent on F (X,Y ∗), X, Y given (F (Z,W ) denotes the space of finite rank operators from

Z to W ). Of course if this should be the case, for X,Y satisfying the hypotheses of the

Proposition, then its conclusion can be strengthened to state: Then every integral operator

from X to Y ∗ is nuclear.

We may now give a definitive solution to Problem 2, under an approximation property

assumption.

Theorem 6. Let X and Y be separable Banach spaces such that X∗ or Y ∗ has the bounded

approximation property. Then the following are equivalent

1. �1 does not embed in X
∨⊗Y .

2. cardL(X∗, Y ∗∗) = c.

3. cardL(X∗, Y ∗∗) < 2c.

Moreover when this occurs, every integral operator from X to Y ∗ is nuclear, and consequently

(X
∨⊗Y )∗ = X∗ ∧⊗Y ∗ , hence (X

∨⊗Y )∗∗ = L(X∗, Y ∗∗) .

Remark. As in the preceding result, we may (obviously) interchange X and Y in the statement

of Theorem 6.

Proof. Suppose first that 1 holds. The approximation property assumption insures that the

integral and nuclear norms are equivalent on F (X,Y ∗), and these in turn are equivalent to the

projective tensor product norm. The final statement now follows from Proposition 5 and the

fact (due to Grothendieck) that (X
∨⊗Y )∗ = I(X,Y ∗); of course then 2 follows by Theorem 1

(i.e., by [OR]).

2 ⇒ 3 is trivial.

Now suppose that 3 holds, and assume that

(50) X∗ has the approximation property .

Let K = {x∗ ⊗ y∗ : (x∗, y∗) ∈ Ba X∗ × Ba Y ∗)}, endowed with its w∗-topology as a subset

of I(X,Y ∗) = (X
∨⊗Y )∗. Thus K is a w∗-compact isometrically norming subset of (X

∨⊗Y )∗.
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To prove that 1 holds it suffices to prove that given (An) a bounded sequence in X
∨⊗Y , then

defining Ân(x∗ ⊗ y∗) = 〈x∗ ⊗ y∗, An〉 for all n and x∗ ⊗ y∗ ∈ K, then

(51) Ân has a pointwise convergent subsequence.

If (51) is false, then by 19 of Theorem 1,

(52) The family F of pointwise cluster points of (Ân) has cardinality 2c.

(Of course we can directly apply Lemma 2 to also see that (52) holds.) Now suppose that

f : K → K is a pointwise cluster point of (Ân) (where K denotes the scalar field), and suppose

that ‖An‖ ≤ C for all n, C < ∞. Now we identify X
∨⊗Y with K∗(X∗, Y ), the Banach space of

compact operators in L(X∗, Y ) which are weak*-norm continuous on bounded subsets of X∗.

(This is legitimate by results in [Gr2].) Of course trivially K∗(X∗, Y ) ⊂ L(X∗, Y ∗∗). Then we

claim that

there exists a unique Tf ∈ L(X∗, Y ∗∗) such that(53)

(i) 〈Tf (x∗), y∗〉 = f(x∗ ⊗ y∗) for all (x∗, y∗) ∈ Ba X∗ × Ba Y ∗

and moreover

(ii) Tf �= Tg if f, g ∈ F , f �= g .

Indeed, we may choose a net (nα)α∈D so that

(54) lim
α

Anα(x∗ ⊗ y∗) = f(x∗ ⊗ y∗) for all x∗ ⊗ y∗ ∈ K .

But then it follows easily that

(55) lim
α

Anα(x∗ ⊗ y∗) def= Gf (x∗, y∗) exists for all (x∗, y∗) ∈ X∗ × Y ∗ ,

and moreover

(56) Gf is a bilinear form on X∗ × Y ∗ with norm bounded by C.

Of course then there is a unique Tf ∈ L(X∗, Y ∗∗) such that

(57) 〈Tf (x∗), y∗〉 = Gf (x∗, y∗) for all (x∗, y∗) ∈ X∗ × Y ∗

and moreover it is obvious that f �= g ∈ F ⇒ Gf �= Gg ⇒ Tf �= Tg. Thus cardL(X∗, Y ∗∗) = 2c,

contradicting 3.

The final statement of Theorem 6 follows by Proposition 5, Remark 3 following its proof,

and the theorem of Grothendieck that X∗ ∧⊗X∗ = N(X,Y ∗) since X∗ has the bap. �

Corollary 7. Let X and Y satisfy the hypotheses of Theorem 6 and suppose �1 does not embed

in either space. Then if every operator from X∗ to Y ∗∗ has separable range, �1 does not embed

in X
∨⊗Y . In particular, this holds if every operator from X∗ to Y ∗∗ is compact.
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Proof. Since �1 does not embed in Y ∗∗, card Y ∗∗ = c, and hence the cardinality of the family of

countable subsets of Y ∗∗ is c. If Z is a separable subspace of Y ∗∗, we may choose a countable

dense subset Z0 of Z, and so we have established that

(58) the cardinality of the family of separable subspaces of Y ∗∗ equals c.

Now for each separable non-zero subspace Z of Y ∗∗,

(59) L(X∗, Z) has cardinality c

by condition 13 of Theorem 1. Since the union of a family of sets of cardinality c has cardinality

c provided each of the sets has cardinality c, (58) and (59) imply that 3 of Theorem 6 holds,

and hence �1 does not embed in X
∨⊗Y by Theorem 6. The final statement of the Corollary

now trivially follows. �

Problem 4. Let X and Y satisfy the hypotheses of Theorem 6, and suppose every integral

operator from X to Y ∗ is nuclear. Is it so that �1 does not embed in X
∨⊗Y unless �1 embeds

in X or Y ?

Problem 4, in turn, suggests

Problem 5. If X and Y are given such that L1 embeds in X∗ ∧⊗Y ∗; does L1 embed in X∗ or

Y ∗?

By the results in [H1] and [P], an affirmative answer holds for particular X,Y iff �1 embeds

in X or Y . An affirmative answer to Problem 5 implies an affirmative answer to Problem 4. For

suppose to the contrary, that X,Y provide a counterexample to Problem 4. Since �1 embeds

in X
∨⊗Y , L1 embeds in (X

∨⊗Y )∗ = I(X,Y ∗). But since �1 does not embed in X or Y , L1 does

not embed in X∗ or Y ∗, and so if the answer to the second part of 5 is affirmative, L1 does

not embed in X∗ ∧⊗Y ∗, which thus cannot equal I(X,Y ∗) contradicting the final statement in

Theorem 6. (See remark 4 following proof of Theorem 11 for further comments on Problem 5.)

Remark. If we do not deal with dual spaces in Problem 5, then the answer is negative. A

remarkable result of Talagrand [T] asserts the existence of separable spaces X and Y so that

L1 embeds in X ⊕ Y but L1 does not embed in X or Y . It follows, since L1 is isomorphic to a

finite codimensional subspace of itself, that also L1 embeds in X ⊕Y0 if Y0 is of codimension 1

in Y . Let x0, y0 be norm one elements of X∗, Y ∗ respectively; choose x∗
0, y

∗
0 norm one elements

of X∗, Y ∗ with x∗
0(x0) = y∗0(y0) = 1, and let Ỹ = y⊥0 . Then X ⊗ [y0] and [x0]⊗ Ỹ are isometric

to X and Ỹ in X
∧⊗Y , and I ⊗ (y∗0 ⊗ y0) is a contractive projection from X

∧⊗Y onto X ⊗ [y0]
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with [x0] ⊗ Ỹ contained in its kernel. It follows that (X ⊕ [y0]) + ([x0] ⊗ Ỹ ) is isomorphic to

X ⊕ Ỹ in X
∧⊗Y and thus L1 embeds in X

∧⊗Y .

Of course this counterexample cannot simply lead to a counterexample for Problem 4, be-

cause if L1 embeds in X∗ ⊕ Y ∗, �1 embeds in X ⊕ Y by [H1] and [P], and then obviously �1

embeds in X or Y . Nevertheless, I am inclined to believe that the answer to problem 3 and

hence to problem 4 is negative. Leter on, we give examples where in fact �1 does not embed

in X∗ or Y ∗, both X∗ and Y ∗ have the metric approximation property and fail the RNP,

and indeed (X
∨⊗Y )∗ �= X∗ ∧⊗Y ∗. However the proof is rather delicate, using specific properties

of these spaces, and I’m inclined to believe there is no technique general enough to give an

affirmative answer to problem 4.

The next result summarizes consequences of the previous results in the context of Problem 2.

Theorem 8. Let X be a given Banach space. Consider the following two properties

P1. Every integral operator on X∗ is nuclear.

P2. �1 does not embed in K(X).

1. If P1 holds, �1 does not embed in X.

2. If X∗ has the approximation property and X∗ or X∗∗ has the RNP, then P1 holds.

3. If X∗ has the bounded approximation property and P2 holds, P1 holds.

4. If X∗ has the bounded approximation property, then P2 holds if and only if for all

separable subspaces Z and Y of X∗ and X respectively such that Z∗ has the bounded

approximation property, the cardinality of L(Z∗, Y ∗∗) is less than 2c (iff the cardinality

equals c).

1. This follows from Theorem 1, part 4, for if 1 is false, this implies there exists an integral

operator on X∗ which is not compact, hence not nuclear.

2. This is Proposition 3.

3. If X∗ has the bap, then K(X) = X∗ ∨⊗X (because X has the ap), and hence

K(X)∗ = I(X∗) = X∗∗ ∧⊗X∗

by Proposition 5, since the hypotheses imply that the integral, nuclear, and projective tensor

norms are equivalent on X∗∗ ⊗ X∗. Of course the final equality implies that P1 holds.

To show 4, we need

Lemma 9. If X∗ has the bap, then very separable subspace E of X is contained in a separable

subspace Z of X such that Z∗ is isomorphic to a complemented subspace of X∗.
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We first complete the proof of Theorem 8, then prove Lemma 9.

1. As in the proof of 3, K(X) = X∗ ∨⊗X and so the “only if” statement follows immediately

from Theorem 6. To see “if”, suppose to the contrary that �1 embeds in K(X). Then we can

choose separable subspaces E and Y of X and X∗ respectively such that �1 embeds in E
∨⊗Y .

But if we choose Z satisfying the conclusion of Lemma 9, then Z∗ has the bap, and then �1

does not embed in Z
∨⊗Y , by Theorem 6, a contradiction. �

Proof of Lemma 9. Since X∗ has the bap, so does X, and so we may choose 1 < λ < ∞ so

that for all finite-dimensional subspaces F of X, there exists a finite rank operator T on X

such that

(60) ‖T‖ ≤ λ and T | F = I | F .

Let e0, e1, e2, . . . be an enumeration of a countable dense subset of E. Choose T1 a finite rank

operator on X satisfying (60), where F = [e0, e1] and “T” = T1. Suppose n ≥ 1 and finite rank

operators T1, Tn have been chosen. Now let F = [Range Tn, [en+1]]. Choose Tn+1 satisfying

(60) with “T” = Tn+1.

This completes the inductive construction of the Tn’s; Let Fn = Tn(X) and Z = ∪Fj . Note

that Fn ⊂ Fn+1 and en ∈ Fn for all n; hence E ⊂ Z. It follows that

(61) Tn(X) ⊂ Z for all n and Tn(z) → z in norm for all z ∈ Z .

Now the compactness of the unit ball of X∗ in the weak* topology implies that there exists a

net (Tnα)α∈∞ (i.e., a subnet of the sequence (Tj) and an operator P on X∗ such that

(62) T ∗
nα

(x∗) → P (x∗) w∗ for all x∗ ∈ X∗ .

(62) shows that ‖P‖ ≤ λ (so P is indeed bounded). Now if x∗ ∈ Z∗, then (61) implies that

T ∗
n(x∗) = 0 for all n, which implies

(63) P (x∗) = 0 for all x∗ ∈ Z+ .

Now by our construction, Tn+1 | Range Tn = I | Range Tn for all n, which implies that for

all k and n > k, TnTk = Tk, and so taking adjoints, T ∗
k T ∗

n = T ∗
k for all k and n > k. But then

for x∗ ∈ X∗, we deduce, thanks to the weak*-continuity of T ∗
k , that

(64) lim
α

T ∗
k T ∗

nα
(x∗) = TkP (x∗) = Tk(x∗) .

In turn, (64) implies, after taking another limit, that P 2 = P ; hence P is a projection. Finally,

(65) if P (x∗) = 0, then x∗ ∈ Z⊥.
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For if not, we would find z ∈ Z, 〈x∗, z〉 �= 0. But then

(66) 〈Px∗, z〉 = lim
α
〈T ∗

nα
, x∗, z〉 = lim

α
〈x∗, Tnαz〉 = (x∗, z) �= 0 .

(63) and (65) show that Z⊥ is the kernel of P ∗. Thus it follows that PX∗ is isomorphic to

X∗/Z⊥, which of course is isometric to Z∗. �

Remark. It is known that the conclusion of the Lemma holds without any approximation

property assumptions, but we included a proof of our needed result for completeness. We only

used the hypothesis of the Lemma to obtain that X has the bounded approximation property.

With a little more care in the proof, we may thus obtain the following result: If X has the

λ-bap and E is a separable subspace of X, there is a separable subspace Z of X with the λ-bap,

containing E, such that Z∗ is λ-isomorphic to a λ-complemented subspace of X∗.

Of course Theorem 8 suggests a possible solution to Problem 2, namely that P1 and P2 are

equivalent properties, if X∗ has the bap.

Problem 6. If X∗ has the bap, does P1 imply P2?

Of course Problems 4 and 6 are linked, for an affirmative answer to Problem 4 implies an

affirmative answer to Problem 6.

We now give examples illustrating Theorem 6. The examples show that the conditions of

Corollary 4 are not necessary, to insure that �1 does not embed in X
∨⊗Y . The examples also

show that there exist separable Banach spaces X and Y not containing �1 isomorphically, so

that there exists an integral non-nuclear operator from X to Y ∗. The examples are natural

generalizations of the James tree space JT . We first define these spaces and summarize some

of their properties.

Let D be the dyadic tree; that is, D is the set of all finite sequences of 0’s and 1’s, ordered

by extension. Let τ : D → N be the standard bijection, given as

(67) ∅, (0), (1), (00), (01), (10), (11), · · ·

and let (ej) be the unit vectors bases of c0,0 the space of all sequences of scalars which are

ultimately zero. A non-empty subset s of D is called a segment provided

(68) s is totally ordered, and whenever α < γ < β in D with α, β ∈ s, then γ ∈ s.

A maximal totally ordered subset of D is called a branch of D; equivalently, this is a segment

containing ∅, unbounded above; branches can also be identified with infinite sequences of 0’s

and 1’s, where if (εn) is such a sequence, the corresponding branch is {∅, (ε1), (ε1, ε2), (ε1, ε2, ε3), . . .}.
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Given a segment s of D, define a functional s∗ on c00 by

(69) s∗(f) =
∑
j∈s

fτ(j) .

Now fix p, 1 < p < ∞, and define a norm ‖ · ‖JTp on c00 by

(70) ‖f‖JTp = max
{( k∑

i=1

|s∗i (f)|p
)?

: k ≥ 1 and s1, . . . , sk are disjoint segments of D
}

.

We define JTp to be the completion of (c00, JTp). JT2 is the space defined as JT in [LS],

discovered in [J3], and the proofs of the properties of JTp that we require are the same as

those for JT . (For an alternate exposition, see [B].)

Let us first note that

(71) s∗ is a norm one functional on JTp for any segment s.

We refer to the functionals β∗, for β a branch of D, as branch functionals. For W a non-empty

subset of D, set

(72) W̃ = [ej : τ(j) ∈ W ] .

Then it is obvious that for any segment s,

(73) s̃ is contractively complemented in JTp, with complement D̃ ∼ s.

Let us also note that given a branch β of D, β ∼ (εj)∞j=1, then if we let βα = eτ−1(ε1,...,εn−1),

j = 1, . . ., then

(βj)∞j=1 is isometrically equivalent to the boundedly complete basis for J

where J denotes the quasi-reflexive order one space of James.
(74)

In particular, (βj)∞j=1 dominates the summing basis, and the branch functional β∗ restricted

to β̃ is the summing functional.

We denote by Dn the family of elements of D of length n; then letting αn
1 , . . . , αn

2n be an

enumeration of Dn, and setting en
j = eτ−1(αn

j ) for all j, we have that

D̃n is contractively complemented in JTp, by ∼̃ Dn ,(75)

and (en
j )2

n

j=1 is isometrically equivalent to the �p
2n basis.

We now summarize the rest of the properties of JTp that we shall need (some of which are

decidedly non-trivial). (Throughout, r∗ denotes the conjugate index to r, 1
r + 1

r∗ = 1.)

Theorem 10.

1. (ej) is a boundedly complete monotone basis for JTp.
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2. (JTp)∗ is the norm-closed linear space of the functionals (e∗j ) biorthogonal to (ej), and

the branch functionals.

3. The set of branch functionals B is homeomorphic to the Cantor set, in the weak*-

topology. If for α ∈ D, Bα = {β∗ : α ∈ β}, then (Ba)α∈∞ is a family of w∗-clopen

subsets of B, forming a base for its topology.

4. Letting (JTp)∗ be the closed linear span of the biorthogonal functionals (e∗α), then

(76) (JTp)∗/(JTp)∗ is isometric to �p∗
c .

5. Every normalized weakly null sequence in JTp has a subsequence equivalent to the �p-

basis.

(5. was established for JT in [AI]; see [B] for an alternate treatment of the proof of Theo-

rem 10 for JT , which immediately generalizes to the case of JTp.)

We may draw some immediate consequences. First, since (JTp)∗ is thus canonically embed-

ded in its double dual, JTp is canonically complemented in (JTp)∗, by ((JTp)∗)⊥. Hence it

follows from Theorem 10 part 4 that

(77) JT ∗∗
p is isometric to JTp ⊕ �p

c .

Of course JTp has the Radon-Nikodym property, being a separable dual. Then obviously by

(77), JT ∗∗
p also has the Radon-Nikodym property and the metric approximation property. So

we deduce that

(78) (JTp)∗, JTp, (JTp)∗, and JT ∗∗
p all have the metric approximation property.

Of course it also follows immediately that �1 does not embed in JT ∗∗
p .

We may now formulate our final main result; which shows in particular that for 1 < p < ∞,

(79) �1 embeds in JTp

∨⊗JTp iff 2 ≤ p < ∞ .

(I am indebted to J. Diestel for showing me the important special case: �1 embeds in JT
∨⊗JT .)

Theorem 11. Let 1 < p, q < ∞. Then the following are equivalent.

1. �1 embeds in JTp

∨⊗JTq.

2. p∗ ≤ q.

3. There exists an integral non-nuclear operator from JTp to (JTq)∗.

Remark. Of course since JTp, JTq satisfy the hypotheses of Theorem 6, we may add as a 4th

equivalence

4. cardLp,q = 2c, where Lp,q = L((JTp)∗, (JTp)∗∗).
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Proof. Suppose first that p∗ ≤ q. We show that 3 holds, which implies that 1 holds by

Theorem 6. Let μ be the “Cantor probability measure” on the Borel sets of Bq, associated to

the family of clopen sets (Bq
α)α∈D. That is, μ is the unique Borel measure so that

(80) μ(Bq
α) =

1
2n

if α ∈ Dn for n = 0, 1, 2, . . . .

(Since we are dealing with different spaces, we are denoting by Bq the set of Banach functionals

on JTq, Bq
α its associated clopen-set basis.) Now we define a map V : L1(μ) → (JTq)∗ by

(81) V f =
∫
B

f(w)w∗ dμ(w) for f ∈ L1(μ) .

The integral denotes the weak*-integral; thus, we easily verify that given x ∈ JTq, then since

w∗ → w∗(x) is a continuous function of norm at most ‖x‖ on B, then for f ∈ L1(μ)

(82) x →
∫
B

f(w)w∗(x) dμ(w)

is in (JTq)∗ and has norm at most ‖f‖L1(μ) thus (81) is well defined, V is indeed a linear

operator, and in fact ‖V ‖ ≤ 1. Then we have that for all α ∈ D,

(83)

⎧⎨
⎩

(V χBα)(eτ(β)) = 1
2|α| if β ∈ Bα

V χBα(eτ(β)) = 0 if β /∈ Bα

where we set |α| = n if α ∈ Dn. Next, let ϕ : Bq → Bp be the canonical homeomorphism such

that ϕ(Bq
α) = Bp

α for all α. Now define U : JTp → C(Bq) by

(84) (Ux)(β∗) = ϕ(β∗)(x) for all x ∈ JTp , β ∈ Bq .

�

Then it is obvious that U is a linear contraction and thus

(85) T = V U is an integral operator from JTp to (JTq)∗ .

Thus by trace duality, we have (by Grothendieck’s fundamental theory) given

x =
∑n

i=1 xi ⊗ yi ∈ JTp ⊗ JTq, then

(86)
∣∣∣ n∑

i=1

Txi(yi)
∣∣∣ ≤ ∥∥∥ n∑

i=1

xi ⊗ yi

∥∥∥
(and

∑n
i=1 xi ⊗ yi →

∑n
i=1 Txi(yi) = tr T

∑n
i=1 yi ⊗ xi is a well defined linear functional; we

used in (86) that the integral norm of T is at most 1). To prove that T is integral but not

nuclear, we shall show that there exists a G ∈ (JTp

∨⊗JTq)∗∗ such that

(87) G(T ) = 1 and G(f) = 0 for all f ∈ JT ∗
p

∧⊗JT ∗
q .

Of course to prove the last claim in (87), it suffices to prove that

(88) G(x∗ ⊗ y∗) = 0 for all x∗ ∈ JT ∗
p , y∗ ∈ JT ∗

q .
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Let us call x∗ ⊗ y∗ a basic tensor if x∗, y∗ are each either a biorthogonal functional or

a summing functional in JT ∗
p , respectively JT ∗

q . Thanks to part 2 of Theorem 10 and the

continuity of G, it actually suffices to prove that (88) holds for all basic tensors x∗ ⊗ y∗.

Now fix n, and define An ∈ JTp ⊗ JTq by

(89) An =
2n∑
i=1

eαn
i
⊗ eαn

i
.

Now let Pn be the canonical projection from JTp onto [en
i ]2

n

i=1; thus P ∗
n is the canonical pro-

jection from (JTp)∗ onto [en∗
i ]2

n

i=1. Let Qn : [en∗
i ]2

n

i=1 → [en
i ]2

n

i=1 be the linear map such that

Qnen∗
i = en

i for 1 ≤ i ≤ 2n, where en∗
i denotes an element of (JTp)∗ and en

i denotes an element

of JTq. Then

(90) An = QnPn .

Thanks to (89), (en∗
i )2

n

i=1 is isometrically equivalent to the �p∗
2n bases, (en

i )2
n

i=1 is isometrically

equivalent to the �q
2n basis, and hence since 2 holds, ‖Qn‖ = 1, ‖Pn‖ = 1, and so by (90)

(91) ‖An‖ ≤ 1 .

We shall define G satisfying (88) and (89) in two steps. First, let G1 ∈ (JTp

∨⊗JTq)∗∗ be a

w∗-cluster point of (An)∞n=1. Of course (91) shows that ‖G1‖ ≤ 1. We have that letting 〈, 〉 be

the pairing between I(JTp, (JTq)∗) and JTp ⊗ JTq given after (70) then for all n,

〈T,An〉 =
2n∑
i=1

T (en
i )(en

i )(92)

=
2n∑
i=1

1
2n

using (98)

= 1 .

Thus G1(T ) = 1.

Next, we claim that for all basic tensors x∗ and y∗,

(93) G1(x∗ ⊗ y∗) = lim
n→∞

2n∑
j=1

x∗(en
i )y∗(en

i )

(part of this assertion is the claim that this limits exists) and so that setting H = G1, then

H(x∗ ⊗ y∗) = 0 unless there is a branch γ so that x∗ = γ∗ (in (JTp)∗),(94)

y∗ = γ∗(in (TJp)∗), and then H(γ∗ ⊗ γ∗) = 1 .

Now it is obvious that the limit in (93) is zero if one of x∗ or y∗ is a biorthogonal functional.

Suppose that there are branches γ �= β such that x∗ = γ∗ and y∗ = β∗, and choose k so that
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the branches split at level k; i.e., if γ = (γj)∞j=0 and β = (βj)∞j=0, then γk �= βk, which implies

that γn �= βn for all n > k. But then if n > k, there are unique i �= j such that αn
i ∈ γ, αn

j ∈ β,

and hence

(95) γ∗(en
� )β∗(en

� ) = 0 for all 1 ≤ � ≤ 2n .

Finally, if x∗ = γ∗ = y∗, then for each n, there is exactly one i with αn
i ∈ γ, and then

γ∗(en
i ) = 1, γ∗(en

j ) = 0, j �= i, and hence
∑2n

�=1 γ∗(en
� )γ∗(en

� ) = 1 for all n. (Actually, (An)

converges in the w∗ operator topology on Lp,q to the operator S such that S(e∗j ) = 0 for all j,

and S(γ∗) = γ∗∗ for all branches γ, where γ∗∗(β∗) = δγβ all β and γ∗∗(e∗j ) = 0 all j; (γ∗∗)γ∈B
is in fact the basis for �q

c in (JTq)∗∗).

Now let F be the family of all finite non-empty subsets of B, directed by inclusion. For each

n and F = {γ1, . . . , γn} ∈ F of cardinality n, choose

(96) mn ≥ n such that the branches γ1, . . . , γn have split at level mn

That is, we may choose n different integers i1, . . . , in in {1, 2, . . . , 2mn} such that

(97) αmn
ij

∈ γj for 1 ≤ j ≤ n .

Define BF ∈ Jp ⊗ Jq by

(98) BF =
n∑

j=1

emn
ij

⊗ emn
ij

.

We have, just as in the definition of the An’s, that

(99) ‖BF ‖ ≤ 1 for all F ∈ F .

Now let G2 be a w∗-cluster point of (BF )F∈F in (JTp ⊗ JTq)∗∗. Then

(100) G2(T ) = 0 .

Indeed, we have that

(101) 〈T, βn〉 =
n∑

j=1

1
2mn

≤ n

2n
→ 0 as n → ∞ .

Moreover, we claim that setting H = G2, then (94) holds for all basic tensors x∗⊗y∗. Indeed, if

x∗ or y∗ is a biorthogonal functional, then obviously 〈Bn, x∗⊗y∗〉 =
∑n

j=1 x∗(emn
ij

)y∗(emn
ij

) = 0

for n sufficiently large. But also if γ, β are difference branches of B, then for n sufficiently

large, the branches will have split at level mn, which implies that γ∗(emn
ij

)β∗(emn
ij

) = 0 for

all 1 ≤ j ≤ n. Finally, suppose γ is a given branch. Then for all F ∈ F with γ ∈ F ,

F = {γ1, . . . , γn} with say γ = γj ,

(102) 〈BF , γ∗ ⊗ γ∗〉 = γ∗
j (emn

ij
)γ∗

j (emn
ij

) = 1 .
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It follows that our cluster point Gn must satisfy

(103) G2(γ∗ ⊗ γ∗) = 1 .

Now finally, let G = G1 − G2. Then we have by (92), (100) and the fact that (94) holds for

H = Gi, i = 1, 2, that G satisfies (87) and (88), and so G ⊥ JTp

∧⊗JTq, G(T ) = 1, whence T is

not nuclear.

Now suppose that q < p∗. To show that 1 holds, we only need to show that JTp and JTq

satisfy the assumptions of Corollary 7; but of course these spaces satisfy all the assumptions

preceding the final one, so we only need to prove that

(104) Every operator from (JTp)∗ to (JTq)∗∗ has separable range.

Let P : (JTq)∗∗ be the projection from (JTq)∗∗ onto JTq, with kernel((JTq)∗)⊥, which we

know by Theorem 10 is isometric to �q
c; for the sake of notational simplicity, let us just set

((JTq)∗)⊥ = �q
c. Now let T : (JTp)∗ → (JTq)∗∗ be a given operator, and set

(105) A = PT and B = (I − P )T .

Obviously A has separable range, and B is an operator from (JTp)∗ to �q
c. We claim that

(106) B is compact.

It suffices to prove that B∗ : �q∗
c → (JTp)∗∗ is compact. To do that, we shall show that

Every normalized weakly null sequence in (JTp)∗∗(107)

has a subsequence equivalent to the �p basis.

This will complete the proof. Indeed, to show that B∗ is compact, it suffices (by reflexivity of

�q∗
c ) to show that

(108) given (xn) a normalized weakly null sequence in �q∗
c , then ‖B∗(xn)‖ → 0.

Suppose this is not the case. But if (xn) fails to satisfy (108), there exists a subsequence (x′
n)

such that (x′
n) is equivalent to the �q∗ basis and by (107), B∗(x′

n) is equivalent to the �p basis.

But our assumption q < p∗ is the same as p < q∗, and we have thus deduced that the �q∗

basis dominates the �p basis, a contradiction. Of course once we know that B∗ and hence B,

is compact, then B has separable range, and thus T has separable range, finishing the proof.

Since (JTp)∗∗ = JTp⊕�p
c and so both factors have the desired property, by Theorem 8 part 5,

(107) is easily seen, but for completeness, here’s the argument. Let (xn) be a normalized weakly

null sequence in (JTp)∗∗.

We may assume (by passing to a subsequence) that (xn) is a basic sequence. Now if there is

a subsequence (x′
n) of (xn) such that ‖Px′

n‖ → 0, we easily obtain a further subsequence (x′′
n)
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such that ((I − P )x′′
n) is equivalent to (x′′

n), and hence by passing to a further subsequence

(x′′
n) if necessary, that (x′′′

n ) is equivalent to the �p basis. Thus we may now assume that

(109) there is a δ > 0 so that ‖Pxn‖ ≥ δ for all n.

But then by Theorem 10 part 5, we may choose a subsequence (x′
n) of (xn) so that

(110) (Px′
n) is equivalent to the �p-basis.

Now if some subsequence (x′′
n) of (x′

n) satisfies that ‖(I − P )x′′
n‖ → 0, then just as before, we

get a subsequence of (x′
n) equivalent to the �p basis, so suppose this also is not the case. But

then (after dropping a few terms if necessary), there is a δ′ > 0 such that

(111) ‖(I − P )x′
n‖ ≥ δ′ for all n ,

and now by the standard property of the �p basis, there is a subsequence (x′′
n) such that also

(112) ((I − P )x′′
n) is equivalent to the �1-basis.

But then also by (110),

(113) (Px′′
n) is equivalent to the �p-basis.

The continuity of P and I − P and (126),(127) now easily yield that (x′′
n) is equivalent to the

�p basis. �

Remarks. 1. Going through the proofs of Theorems 6 and 11 is a difficult way to see that

condition 4 in the Remark (following the statement of Theorem 11) holds if 2 holds, for this may

more easily be seen directly as follows. Since (JTp)∗ has the metric approximation property,

(114) JT ∗
p

∧⊗JT ∗
q is isometric to a closed linear subspace of I(JTp, JT ∗

q ) = (JTp

∨⊗JTq)∗ ,

and thus

(115) Lp,q is isometric to a quotient space of (JTp

∨⊗JTq)∗∗,

(where Lp,q is as in the above remark). Using Theorem 10 part 4 and (77), let Q : (JTp)∗ → �p∗
c

be a quotient map and j : �q
c → (JTq)∗∗ be an isometric injection. Since p∗ ≤ q, the �∗∗-

basis dominates the �q-basis. Then given η ∈ {0, 1}c, there exists a unique linear contraction

Tη : �p∗
c → �?

c such that

(116) for all α < c, (Tη)(α) = 1 if η(α) = 1, (Tη)(α) = 0 if η(α) = 0.

Now defining T̃η ∈ Lp,q by

(117) T̃η = jTηQ ,
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it follows that η �= η ⇒ T̃η �= T̃η′ , proving that cardLp,q = 2c (and also showing directly that

(JTp

∨⊗JTq)∗∗ has cardinality 2c by (115), thus giving that �1 embeds in JTp

∨⊗JTq by [OR].

2. An inspection of the operator V constructed in the above proof shows that its range is

actually contained in (JTq)∗, and thus condition 3. of Theorem 10 may be strengthened to

3′. There exists an integral operator from JTp to (JTq), which is not nuclear

4. It’s conceivable that (JT )∗
∧⊗(JT )∗ (or more generally, (JTp)∗ ⊗ (JT ∗

p )∗ for some 1 <

p, q < ∞, (p∗ ≤ q), is a counterexample to Problem 4. I reduced this to a separable issue,

which, however, I cannot decide. That is, I proved that if p, q are as above and L1 embeds in

(JTp)∗
∧⊗(Jq)∗, then L1 embeds in (JTp)∗

∧⊗(JTq)∗. An alternate approach to Problem 3, using

embeddings of unconditional families in place of embeddings of L1, does not work. In fact, it

follows that Y = ((JT )∗
∧⊗JT ∗)/(JT )∗

∧⊗(JT )∗) is isometric to �2
c

∧⊗�2
c ; the space of “diagonal”

operators in this space is isometric to �1
c. Thus, Y contains a subspace isometric to �1

c, whence

by the lifting property of this space, (JT )∗
∧⊗(JT )∗ contains a subspace isometric to �1

c . However

(JT )∗ has no uncountable unconditional family by Theorem 1.

We conclude this section with an application of Theorem 8 to the relationship of Problem 1

with the RNP. We first need

Lemma 12. (JTq)∗ fails the RNP for all q, 1 < q < ∞.

Proof. We shall show that (JTq)∗ has a “δ-tree.” We first motivate the construction. Let μ

be the Cantor measure on the Borel subsets of B and V : L1(μ) → (JTq)∗ be the operator

constructed at the beginning of the proof of Theorem 11. Then in fact V is valued in (JTq)∗, and

is not representable by a Bochner integrable function. Rather than proving this, however, let us

just examine: V (1). Since (e∗j ) is a w∗-basis for (JTq)∗, V (1) must have an expansion; V (1) =∑∞
j=1 cje

∗
j , the series converging in the w∗-topology. The coefficients (cj) are determined by:

cj = 〈V (1), ej〉 for all j. Let us instead, label the coefficient corresponding to ej as cα, where

j = τ(α). Then for any α ∈ D,

(118) 〈V 1, eτ(α)〉 =
∫
B

w∗(eτ(α)) dμ(w) =
1

2|α|
,

because w∗(eτ(α)) = 1 if w ∈ Bα and 0 otherwise.

But we have that

(119)
∑
α∈D

1
2|α|

e∗τ(α) converges in norm.
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Indeed, let yn be defined by

(120) yn =
2n∑
j=1

1
2n

(en
j )∗ =

1
2n

∑
|α|=n

e∗τ(α) .

Then

(121) ‖yn‖ =
1

2n/q∗ by (75).

Thus

(122)
∞∑

n=0

‖yn‖ =
1

1 − 1
2n/q∗

=
2n/q∗

2n/q∗ − 1
def= cq < ∞ ,

and of course
∑∞

n=0 yn =
∑

α∈∞
1

2|α| e
∗
q(α).

It is then easily verified that for any α,

(123) T (χBα) =
∑

γ∈Bα

1
|α|e

∗
τ(α)

and this series converges in norm, by exactly the same reason we gave for (119).

Now define (tα)α∈D by

(124) tα = 2|α|
∑

γ∈Bα

1
2|α|

e∗τ(γ) = T (2|α|χBα .

Since [e∗τ(γ) : γ ∈ Bα] is canonically isometric to (JTq)∗, we thus have that

(125) ‖tα‖ ≤ cq for all α .

It follows by (124) and the linearity of T (or by direct computation) that for all α ∈ D,

(126) tα =
1
2
(tα0 + tα1)

and

(127) ‖tα0 − tα1‖ ≥ ‖e∗α0
− e∗α1

‖ = 21/q∗ .

Thus (tα)α∈D is a bounded “δ-tree” with δ = 21/q∗ , and so (JTq)∗ fails the RNP (cf. [DU]). �

Corollary 13. Let 1 < p < ∞ and let Yp = (JTp)∗ ⊕ JTp.

1. Yp and Y ∗
p fail the RNP.

2. �1 does not embed in K(Yp) if 1 < p < 2.

3. �1 embeds in K(Yp) and moreover there exists an integral non-nuclear operator on Y ∗
p

if 2 ≤ p < ∞.

Proof. 1. Yp fails the RNP by the preceding result and

(128) Y ∗
p = JTp ⊕ (JTp)∗

fails the RNP because (JTp)∗ does.
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Next, we have for any p that

(129) K(Yp) =
[
(JTp)∗

∨⊗JTp

]
⊕ [(JTp)∗ ⊗ JTp] ⊕

[
(JTp)∗

∨⊗(JTp)∗
]
⊕

[
JTp

∨⊗JTp

]
.

�1 does not embed in the first three summands in (129) by Corollary 4, because in each case,

the dual of one of the factors in the injective tensor product has the RNP (and of course the

factors all have the map, and their duals do not contain �1 isomorphically).

If 1 < p < 2, then p∗ > p, and so �1 does not embed in the fourth summand by Theorem 11,

so �1 does not embed in K(Yp).

If 2 ≤ p, then p∗ ≤ p, and thus �1 embeds in the fourth summand by Theorem 11, part 3 of

which also shows part 3 of the Corollary, using (129). �

Remark. Notice by Lemma 12 that we also obtain an integral operator from JTp into (JTp)∗
which is not nuclear if 2 ≤ p < ∞, while if 1 < p < 2, every integral operator from JTp into

(JTp)∗ is nuclear by Theorem 11.

Appendix

We give a somewhat new proof of (8) via

Proposition 14. Suppose that Z is a L∞ space which is isomorphic to a quotient of a subspace

of a Banach space X. Then Z∗ is isomorphic to a subspace of X∗.

Thus to obtain (8), if �1 is isomorphic to a subspace of X, C([0, 1]) is isomorphic to a

quotient of that subspace, and hence the Proposition applies. (For properties of L∞ spaces,

see [LP] and [LR]; the definition will appear in our proof.)

Proof of Proposition 14. Let X̃ be a (closed linear) subspace of X and T : X̃ → Z a surjective

bounded linear map, with ‖T‖ = 1. We may choose a “P1” space W with Z ⊂ W (e.g.,

W = �∞(Ba X∗)), and so we can then choose T̃ : X → W with ‖T̃‖ = 1 such that T̃ extends

T . Now choose λ > 1 such that for all finite dimensional subspaces E of Z, there exists a

subspace FE ⊃ E with

(130) d(FE , �∞n ) ≤ λ , where dimFE < ∞
(and the first term in (130) denotes the Banach-Mazur distance from FE to �∞n ). Therefore we

may choose PE : W → Z with

(131) ‖PE‖ ≤ λ , P 2
E = PE , and P |FE

= I|FE
.

Now let D be the family of all finite dimensional subspaces of Z, directed by reverse inclusion.

Then a compactness argument, using the fact that λBa Z∗ is w∗-compact, shows there is a
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linear operator S : Z∗ → W ∗ so that

(132) ‖S‖ ≤ λ and for all z ∈ Z and z∗ ∈ Z∗ , 〈Sz∗, z〉 = 〈z∗, z〉 .

Thus if R : W ∗ → Z∗ denotes the canonical restriction map, we have by (132) that

(133) RS = IZ∗ .

Then setting Y = S(Z∗), Y is λ-isomorphic to Z∗, since (133) gives that S is an isomorphism

with the inverse of S : Z∗ → Y given by R|Y . Moreover,

(134)
Given ε > 0 and y ∈ Y , there exists a z ∈ Z with ‖z‖ = 1
such that |y(z)| > 1

λ‖y‖ − ε.

(It also follows from (133) that Y is complemented in Z∗, by Z⊥, but we don’t use this.)

Now (134) implies that

(135) T̃ ∗ | Y is an isomorphism, with T̃ (Y ) being λ‖(T ∗)−1‖-isomorphic to Z∗.

Indeed, given y ∈ Y and ε > 0, choose z ∈ Z satisfying (134), then choose x ∈ X̃ with

‖x‖ ≤ ‖(T ∗)−1‖ + ε so that Tx = z. Thus letting τ = 1
‖(T ∗)−1‖ + ε,

‖(T̃ ∗)(y)‖ = τ |〈T̃ ∗y, x〉|
= τ |〈y, T̃ x〉| = τ |〈y, Tx〉|
= τ |〈y, z〉|
≥ τ

λ
‖y‖ − ε .

(136)

Since ε > 0 was arbitrary, (135) is proved. �

Remark. We have kept track of the constants in the above proof because it then yields the

following result: Suppose X and Z are Banach spaces so that Z is an “L1-predual,” meaning

that Z∗ is isometric to L1(μ) for some (not necessarily σ-finite) measure μ, and suppose for

all ε > 0, there exists a subspace X̃ of X so that Z is 1 + ε-isomorphic to a quotient space of

X̃. Then Z∗ is 1 + ε-isomorphic to a subspace of X∗ for all ε > 0.

Indeed, we need only apply our proof, using the standard fact (as follows from local reflex-

ivity) that Z is an L∞,λ space for all λ > 1. Now assuming �1 embeds in X, then by a result

of James [J1], given ε > 0, there is a subspace X̃ of X which (1 + ε)-isomorphic to �1, and

consequently C([0, 1]) is (1 + ε)-isomorphic to a quotient space of X̃ . Hence we deduce that

for all ε > 0, (C(Λ))∗ is (1 + ε)-isomorphic to a subspace of X∗.

As we show in Proposition 17, James’ result that �1 is not distortable, holds for the spaces

�1
κ as well, κ an infinite cardinal. We thus obtain the following generalization of the above

quantitative version of (8).
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Theorem 15. Let κ be an infinite cardinal number, and suppose X contains a subspace iso-

morphic to �1
κ. Then given Z an L1 predual of density character at most κ, X∗ contains a

subspace (1 + ε)-isomorphic to Z∗ for all ε > 0.

The following result, which reduces to Pe�lczyński’s theorem for κ = ℵ0, is an immediate

consequence.

Corollary 16. Let κ be an infinite cardinal number and suppose X contains a subspace iso-

morphic to �1
κ. Then for all ε > 0, X∗ contains a subspace (1+ ε)-isomorphic to [C({0, 1}κ)]∗.

�

Finally, we give the extension of James’ theorem to the spaces �1
κ (which is apparently a new

result).

Proposition 17. Let κ be an infinite cardinal number, and assume X contains a subspace

isomorphic to �1
κ. Then X contains a subspace (1 + ε)-isomorphic to �1

κ for all ε > 0.

Proof. We identify cardinals with initial ordinals. Let then [eα)α<κ be a normalized basis of

cardinality κ in X, equivalent to the �1
κ basis. For each cardinal α < κ, define δα by

(137)

⎧⎪⎪⎨
⎪⎪⎩

δα = sup{δ > 0 : ‖
∑
γ≥α

cγeγ‖ ≥ δ for

all families of scalars (cγ)γ≥α such that
∑
γ≥α

|cγ | = 1}

It is obvious that α → δα is an increasing function. Hence

(138) lim
α→κ

δα
def= δ exists.

(Of course if κ is of uncountable cofinality, then δα = δ for all α sufficiently large; however this

fact is irrelevant for the proof.)

Now let 0 < η < δ be given. It follows easily by induction and the fact that the family of

all finite subsets of κ also has cardinality κ, and also because card γ < κ for γ < κ and hence

card{α : γ ≤ α < κ} = κ for all γ < κ}, that we may choose a family (fα)α<κ of finite linear

combinations of the eα’s such that for each α, there exist ordinals α ≤ aα ≤ bα and cγ ’s, only
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finitely many non-zero, with

fα =
∑

aα≤γ≤bα

cγeγ(153i)

‖fα‖ = 1 and
∑

aα≤γ≤bα

|cγ | >
1

δ0 + η
(153ii)

δα0 > δ − η(153iii)

for all α < α′ < κ , bα < a′α .(153iv)

Now let (xα)α<κ be a family of scalars, only finitely many non-zero, such that
∑

α<κ |xα| = 1.

Thus we have

‖
∑
α

xαfα‖ = ‖
∑
α

xα

∑
aα≤γ≤bα

cγeγ‖

≥ δα0

∑
α

|xα|
∑

aα≤γ≤bα

|cγ | by definition of δα0

>
δα0

δ0 + η

∑
|xα| by (153ii)

>
δ − η

δ + η
by (138).

(140)

Thus given ε > 0, we may choose η so small that δ−η
δ+η > 1

1+ε , proving Proposition 17. �

Remark. Similar reasoning shows that the “predual” formulation of Proposition 17 also holds.

That is,

Proposition 18. Let κ be a infinite cardinal number, and assume X contains a subspace

isomorphic to c0(κ). Then X contains a subspace (1 + ε)-isomorphic to c0(κ) for all ε > 0.
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