$$
\text { M328K - Rusin - HW1 - Due Thursday, Jan } 262017
$$

1. Show that the number $123,456,789,876,543,201,234,567$ is not a perfect square. (Hint: According to the "Division Algorithm" theorem, for every integer a there exists an integer q such that either
$a=5 q \quad$ or $\quad a=5 q+1 \quad$ or $\quad a=5 q+2 \quad$ or $\quad a=5 q+3 \quad$ or $\quad a=5 q+4$
What does that tell you about a^{2} ?)
2. Show me how well you can write a proof by induction by finding (and proving!) a formula for the product of the first n powers of 2 . For example, the product of the first three powers of 2 is $2 \cdot 4 \cdot 8=64$.
3. Prove that any amount of postage over $\$ 1$ can be paid for with a combination of 7 -cent stamps and 11-cent stamps. (Postage is always a positive integer number of cents.)
4. Do there exist positive integers a, b, c for which $a \mid(b c)$ but $a \nmid b$ and $a \nmid c$?
5. Show that if a and b are integers with $a \mid b$ then $a^{2} \mid b^{2}$.
6. Recall that a set of real numbers is called well-ordered if every non-empty subset of it has a smallest element. Is the set of non-negative rational numbers well-ordered?

Challenge: I mentioned in class that it can be difficult to know whether an integer n can be represented as a sum of three cubes. Can you find three integers x, y, z for which $x^{3}+y^{3}+z^{3}=12$? How about 13 ?

