M328K - Rusin - HW2 - Due Thursday, Feb 22017

1. Compute $7^{160}(\bmod 11)$. Your answer should be one of the numbers

$$
0,1,2,3,4,5,6,7,8,9, \quad \text { or } 10 .
$$

2. Show that if $a \equiv b \quad(\bmod c)$ and $d \equiv f \quad(\bmod c)$ then $a d \equiv b f \quad(\bmod c)$
3. True or false? If a, b, c, d are positive integers and $a \equiv b(\bmod c)$ and $a \equiv b(\bmod d)$ then $a \equiv b \quad(\bmod c d)$. (Prove or give a counterexample.)
4. List all the divisors that the numbers 75 and 45 have in common (and therefore deduce what is the gcd of 45 and 75).
5. Show that if a is any integer, then $a^{3}-a$ is a multiple of 3 .
