
M328K – Rusin – HW4 – Due TUESDAY, Feb 21 2017

My apologies for being late to distribute this HW. How about if I move the due date
back one class? That way you will be turning this in just before the first midterm.

1. Find all solutions to the following systems of equations:

(a) x ≡ 3 (mod 7) and x ≡ 7 (mod 3)

(b) x ≡ 5 (mod 14) and x ≡ 20 (mod 21)

(c) x ≡ 5 (mod 14) and x ≡ 19 (mod 21)

2. (a) Find an inverse of 10 modulo 121. (Hint: you might want first to find an integer y
with 10y ≡ −1 (mod 121) .)

(b) Solve the congruence 10x+ 23 ≡ 97 (mod 121) .

3. There is a tool that people use to check their arithmetic, called “casting out nines”.
This is illustrated by the following example: if we need to compute (12 × 34) + 56 we
may do so longhand; I get 408 + 56 = 464. In order to check this, we instead replace
every integer encountered by the sum of its digits, replacing 12 by 1 + 2 = 3, 34 by 7,
and 56 first by 11 and then by 1 + 1 = 2; this gives us a simpler computation to do:
(3×7)+2 = 21+2 −→ 3+2 = 5 This is to be compared to the digit-sum for our proposed
answer: 464 −→ 14 −→ 5. The fact that we got the same single digit (namely 5) in both
cases is a corroboration that we probably did not make any mistakes.

(a) Show by example that this technique can fail to catch some errors in addition.

(b) Explain why the technique does work, that is, if for every integer n we let D(n)
be the sum of the digits of n (written in base-10 notation) and let E(n) be the result of
applying D repeatedly until only a single digit remains, then show E(n+m) = E(E(n) +
E(m)) and E(n × m) = E(E(n) × E(m)). (Hint: 10k ≡ 1 (mod 9) for every positive
integer k. Now think about what “base-10 notation” means)

4. (a) Compute the 5th row of Pascal’s Triangle.
(b) The ith term in the nth row of Pascal’s Triangle equals

n!

i! (n− i)!
.

Show that when n is prime, all entries of the nth row are multiples of n except the zeroth
and the nth.

(c) Use the Binomial Theorem to show that when n is prime, (1 + 1)n ≡ 2 (mod n) .
(d) Use induction to show that kn ≡ k for every k = 1, 2, 3, . . ., again assuming n is

prime.

5. Is 2341 ≡ 2 (mod 341) ? Is 3341 ≡ 3 (mod 341) ? Is 341 prime?

6. (a) Find all solutions to the congruence x2 ≡ 1 (mod 8)



7. (b) Show that if p is prime and x2 ≡ 1 (mod p) then either x ≡ 1 (mod p) or
x ≡ −1 (mod p) . (Hint: Use Euclid’s definition of “prime” on the premise that p|(x2−1).)

8. Suppose N = pq where p and q are both primes.
(a) Show that there exists an integer x with x2 ≡ 1 (mod N) but x 6≡ ±1 (mod N) .

(Hint: Chinese Remainder Theorem.)
(b) Show that if y2 ≡ 4 (mod N) and y 6≡ ±2 (mod N) then gcd(x− 2, N) is one of

the two prime divisors of N .

Remark: This last observation is really important. Since computing gcd’s (by the Eu-
clidean Algorithm) is really very easy (for a computer), a small generalization of this last
exercise says more generally that you can find a factor of a big number N almost instantly
if you can find a number (other than the obvious one) whose square is a small perfect
square mod N . It turns out that there are ways to do this, faster than you might expect.
This led to factorization programs which were considered very good in the early computer
days.

If you have a computer package that can handle large integers, you might try for ex-
ample to factor N = 1545013 using the fact that 534052 ≡ 27 and 1775732 ≡ 12 (mod N)

9. Recall that our definition of the Euler φ-function is that φ(n) is the number of integers
in {0, 1, . . . , n − 1} which are coprime to n. Use this definition to show that φ(n) is even
for every integer n > 2.

10. Show that if m|n then φ(m)|φ(n).


