
M328K – Rusin – HW4 ANSWERS – Due TUESDAY, Feb 21 2017

1. Find all solutions to the following systems of equations:

(a) x ≡ 3 (mod 7) and x ≡ 7 (mod 3)

(b) x ≡ 5 (mod 14) and x ≡ 20 (mod 21)

(c) x ≡ 5 (mod 14) and x ≡ 19 (mod 21)

ANSWER: (a) is standard Chinese Remainder: it’s easy to spot that x = 10 is a solution,
and then CRT assures us that the solution is unique modulo 21.

(b) has no solutions: if x ≡ 5 (mod 14) then it’s also true that x ≡ 5 (mod 7) ; but
if x ≡ 20 (mod 21) then we’d have x ≡ 20 (mod 7) . Since 5 6≡ 20 (mod 7) , this is a
contradiction. So no such x can exist.

(c) is more delicate. The first condition requires x = 5 + 14k for some integer k; then
the second requires 5 + 14k = 19 + 21n for some n, which in turn simplifies to 2k = 2 + 3n.
Thus n must be even, say n = 2m, in which case k = 1+3n, so that x = 19+42k. That is,
the complete solution is x ≡ 19 (mod 42) . Note that 42 is not the product of the moduli
14 and 21, but it is their lcm.

In the general case the analysis of a system of congruences can be done one prime at
a time: if for any prime p there is a contradiction in the demands modulo (a power of) p,
then there will be no solution; otherwise, use the CRT to find the unique solution modulo
each prime power. The overall solution will be unique modulo the lcm of the moduli.

2. (a) Find an inverse of 10 modulo 121. (Hint: you might want first to find an integer y
with 10y ≡ −1 (mod 121) .)

(b) Solve the congruence 10x+ 23 ≡ 97 (mod 121) .

ANSWER: For (a) we observe 10 · 12 ≡ −1 so 10 · −12 ≡ 1, that is, the inverse of
10 is −12 ≡ 109. Then we can solve (b) by multiplying both sides of the congruence
10x ≡ 74 by the inverse of 10. To do it by hand I might multiply by 12 instead to see
−x ≡ 12 · 74 = 888 ≡ 41, so x ≡ −41 ≡ 80.

3. There is a tool that people use to check their arithmetic, called “casting out nines”.
This is illustrated by the following example: if we need to compute (12 × 34) + 56 we
may do so longhand; I get 408 + 56 = 464. In order to check this, we instead replace
every integer encountered by the sum of its digits, replacing 12 by 1 + 2 = 3, 34 by 7,
and 56 first by 11 and then by 1 + 1 = 2; this gives us a simpler computation to do:
(3×7)+2 = 21+2 −→ 3+2 = 5 This is to be compared to the digit-sum for our proposed
answer: 464 −→ 14 −→ 5. The fact that we got the same single digit (namely 5) in both
cases is a corroboration that we probably did not make any mistakes.

(a) Show by example that this technique can fail to catch some errors in addition.

(b) Explain why the technique does work, that is, if for every integer n we let D(n)
be the sum of the digits of n (written in base-10 notation) and let E(n) be the result of
applying D repeatedly until only a single digit remains, then show E(n+m) = E(E(n) +
E(m)) and E(n × m) = E(E(n) × E(m)). (Hint: 10k ≡ 1 (mod 9) for every positive
integer k. Now think about what “base-10 notation” means)



ANSWER: For (a) you could for example note that the calculation “12+34 = 64” passes
the casting-out-nines test even though it’s wrong. (Casting-out-nines can NEVER catch
an erroneous interchange of digits.)

The reason CO9s works is because E(n) ≡ n (mod 9) for every integer n. To see
this, write n in its usual base-10 expansion:

n =

k∑
i=0

ai10i

so the ai are the digits of n. Then D(n) =
∑k

i=0 ai, which is congruent to n itself modulo
9 because 10 ≡ 1 (mod 9) (and thus all powers of 10 are also congruent to 1). Then it
follows that D(D(n)) ≡ D(n) ≡ n, D(D(D(n))) ≡ D(D(n)) ≡ D(n) ≡ n, etc. At some
point the process stabilizes to E(n) ≡ n (mod 9) .

Now that we know E(n) ≡ n for every integer n, we see that E(n + m) ≡ n + m ≡
E(n) +E(m) ≡ E(E(n) +E(m)); that is, if A = n+m has been computed correctly, then
E(A) must agree with (the sum of the digits of) the sum of E(n) and E(m). Likewise for
products: E(n ×m) ≡ n ×m ≡ E(n) × E(m) ≡ E(E(n) × E(m)); that is, if A = n ×m
has been computed correctly, then E(A) must agree with (the sum of the digits of) the
product of E(n) and E(m).

4. (a) Compute the 5th row of Pascal’s Triangle.
(b) The ith term in the nth row of Pascal’s Triangle equals

n!

i! (n− i)!
.

Show that when n is prime, all entries of the nth row are multiples of n except the zeroth
and the nth.

(c) Use the Binomial Theorem to show that when n is prime, (1 + 1)n ≡ 2 (mod n) .
(d) Use induction to show that kn ≡ k for every k = 1, 2, 3, . . ., again assuming n is

prime.

ANSWER: The fifth row of Pascal’s Triangle reads: 1, 5, 10, 10, 5, 1. Notice that all
the terms except the ones on the ends are multiples of 5. That’s not a fluke: the ith
entry in the nth row is an integer C(n, i) and, from the formula given, has the feature
that i!(n − i)!C(n, i) = n!. The right side is obviously a multiple of n, so that n divides
i!(n− i)!C(n, i) too, and thus — assuming n is prime! — must divide one of those factors.
It obviously cannot divide any of the factors in i! or (n− i)! because it’s larger than them
(unless i = n or i = 0) so it must divide the last factor, C(n, i).

By the Binomial Theorem, it then follows that if a and b are any integers, and n is
prime, then (a + b)n =

∑n
i=0 C(n, i)aibn−i ≡ an + bn (mod n) since all the other terms

in the sum are multiples of n. In particular, when a = b = 1 we have (1 + 1)n ≡ 1n + 1n,
that is, 2n ≡ 2 (mod 2) . Then proceed by induction: if you have already proved kn ≡ k,
it follows that (k + 1)k ≡ kn + 1n ≡ k + 1 as well.



If k is not divisible by the prime n, you could then multiply both sides by the inverse
of k (mod n) and conclude that kn−1 ≡ 1 (mod n) , which is also good to know.

5. Is 2341 ≡ 2 (mod 341) ? Is 3341 ≡ 3 (mod 341) ? Is 341 prime?

ANSWER: Working modulo 341 I compute the first few powers of 2 to be

22 = 4, 23 = 8, . . . , 28 = 256, 29 = 512 ≡ 171, 210 ≡ 341 ≡ 1

Then of course 2340 = (210)34 ≡ 1, too. So after working on problem 4 you might jump to
the conclusion that 341 is prime, but of course it’s not: 341 = 11 · 31.

If you had noticed that factorization in the first place, you could have proceeded
differently: from problem 4 it follows that 210 ≡ 1 (mod 11) since 11 is prime. Also
25 = 32 ≡ 1 (mod 31) so 210 ≡ 1 (mod 31) too. This shows that 210 ≡ 1 (mod 341) , as
already proved a different way.

You could similarly show that 310 ≡ 1 (mod 11) and 330 ≡ 1 (mod 31) , so 3340 =
311·30+10 ≡ 310 (mod 31) , and I work out that last one to be 25 because 35 = 243 ≡
−5 (mod 31) . So 3340 cannot be congruent to 1 modulo 341 because it’s not even congru-
ent to 1 modulo 31. With an eye toward problem 4 again, this shows 341 is not prime.

You might find it amusing to note that a560 ≡ 1 for every integer a that’s coprime
to 561, and yet 561 is not prime. That is, 561 successfully manages not to reveal its
compositeness no matter how many times we try to use the test from problem 4! Such
numbers are called pseudo-primes and they are rarer than the primes themselves (even
though there are infinitely many of them).

6-7. (a) Find all solutions to the congruence x2 ≡ 1 (mod 8)
(b) Show that if p is prime and x2 ≡ 1 (mod p) then either x ≡ 1 (mod p) or

x ≡ −1 (mod p) . (Hint: Use Euclid’s definition of “prime” on the premise that p|(x2−1).)

ANSWER: For (a) note that (4k± 1)2 = 16k2± 8k+ 1 ≡ 1 (mod 8) for every integer k;
it follows that every odd integer x solves the congruence x2 ≡ 1 (mod 8) .

On the other hand, if p is prime and x2 ≡ 1 (mod p) then p divides x2 − 1 =
(x − 1)(x + 1); from Euclid’s characterization of primes that means p must divide either
x− 1 or x+ 1. In the first case x ≡ 1 (mod p) and in the second case x ≡ −1 (mod p) .

8. Suppose N = pq where p and q are both primes.
(a) Show that there exists an integer x with x2 ≡ 1 (mod N) but x 6≡ ±1 (mod N) .

(Hint: Chinese Remainder Theorem.)
(b) Show that if y2 ≡ 4 (mod N) and y 6≡ ±2 (mod N) then gcd(x− 2, N) is one of

the two prime divisors of N .

ANSWER: When p, q are distinct primes, then a congruence holds modulo pq iff it holds
both modulo p and modulo q. As in problem 7 we see x2 ≡ 1 (mod p) is only possible if
x ≡ ±1 (mod p) . An integer x which satisfies x ≡ 1 modulo both p and q will be congruent
to 1 modulo N as well; likewise if x ≡ −1 modulo both p and q then x ≡ −1 (mod N) .
No interesting solutions x so far. BUT: we also get a solution to our original congruence if



x ≡ 1 (mod p) while x ≡ −1 (mod p) or vice versa, and the Chinese Remainder Theorem
assures us that there are such x.

You might try working out an example: x2 ≡ 1 (mod 15) iff x ≡ 1,−1, 4, or − 4,
and 4 is the unique congruence class modulo 15 which is congruent to +1 modulo 3 and
congruent to −1 modulo 5.

I also added this challenge: “If you have a computer package that can handle large
integers, you might try for example to factor N = 1545013 using the fact that 534052 ≡ 27
and 1775732 ≡ 12 (mod N) ”.

The idea for this one is to observe that from the data given we conclude 22 · 534052 ≡
108 ≡ 32 · 1775732 (mod N) , i.e. N divides (2 · 53405)2 − (3 · 177573)2 = (2 · 53405− 3 ·
177573) · (2 · 53405 + 3 · 177573) and thus every prime divisor of N divides this product
too, and so must divide one of the factors — but some primes might divide the first factor
425909 and some divide the second factor 639529. Indeed we can then use the Euclidean
Algorithm to quickly compute the gcds of these integers with N ; they are 1249 and 1237
respectively, and indeed we have just found the prime divisors of N !

9. Recall that our definition of the Euler φ-function is that φ(n) is the number of integers
in {0, 1, . . . , n − 1} which are coprime to n. Use this definition to show that φ(n) is even
for every integer n > 2.

ANSWER: For each a coprime to n we find gcd(n− a, n) = gcd(a, n) = 1 so that n− a
is also among the coprime integers. That is, the integers we are counting come in pairs,
a and n− a (one less than n/2 and one greater than n/2). When you’re counting objects
that come in pairs there’s obviously an even number of them!

There is an exception: φ(2) = 1 is odd. How did that happen? It’s because for n = 2
and a = 1 we have n − a = a again: there’s not really a pair here. But in order for this
to happen we need n = 2a, in which case gcd(n, a) = gcd(2a, a) = a; unless a = 1 (so that
n = 2), this means a will not be coprime to n.

10. Show that if m|n then φ(m)|φ(n).

ANSWER: There are more interesting proofs I can use here but let’s simply use the
formula I gave in class:

φ(n) = n ·
∏
p|n

(1− 1

p
)

So if m|n, say, n = mk for some integer k, then all the primes dividing m will also divide
n, giving a lot of cancellation in

φ(n)

φ(m)
=
( n
m

)∏
(1− 1

p
),

where the only factors left in the product are those for primes p which divide n but not m.
But in this case they divide k; write k = k′ ·k′′ where k′′ is the product of all these primes.
In that case the right-hand side above will be just k′ ·

∏
(p− 1) which is an integer. Thus

φ(m) divides φ(n).


