M328K - Rusin - HW5 - Due Thursday, Mar 92017

1. Give a formula for the number of positive divisors of a number n based on its factorization into primes. That is, if

$$
n=p_{1}^{n_{1}} p_{2}^{n_{2}} \ldots p_{k}^{n_{k}}
$$

then determine how many divisors n has.
2. Show that if a and b are coprime integers and $a \cdot b$ is a perfect cube, then a and b are perfect cubes too. The corresponding statement for squares is almost true, but there's a little subtlety; can you find it?
3. Show that for every integer $n>1, n^{3}+1$ is composite. (Hint: you may find a few examples to be instructive. Try $n=1,2,4,6$, and 16.)
4. Twin primes are primes p and q which differ by 2 . For example 11 and 13 are twin primes. Prove that there are infinitely many primes which are NOT part of a twin-prime pair. How many primes p are there for which $p, p+2$, and $p+4$ are all prime?

No one knows whether or not there are infinitely many pairs of twin primes, although it $i s$ known that they are fairly sparse, in the sense that the sum of their reciprocals is finite!
5. For each integer n let C_{n} denote the central binomial coefficient $C_{n}=\binom{2^{n+1}}{2^{n}}$. Compute C_{0}, C_{1}, C_{2}. Show that for every integer $M, \operatorname{gcd}\left(\mathrm{M}, C_{n}\right)$ is divisible by all the prime divisors of M that lie between 2^{n} and 2^{n+1}.

Note that in particular, we can factor every integer M with only about $\log (M) \operatorname{gcd}$ computations. This is very fast! The only difficult part is computing the numbers C_{n} in the first place!

