
M328K – Rusin – HW6 – ANSWERS

1. Suppose a and b are positive integers. Show that if a3|b2 then a|b. Can we also conclude
that a|b if instead we are instead told that a2|b3?

ANSWER: Write the prime factorizations of a and b as a =
∏

pep and b =
∏

pfp

respectively. Here the products run over all primes, with the exponents ep and fp being zero
for almost all primes (e.g. 9 = 203250 . . .). Then the assertion that a3|b2 can be restated
as the fact that for every prime p, 3ep ≤ 2fp (using here the Fundamental Theorem of
Arithmetic). But then each ep is no larger than 2

3fp, which in turn is less than or equal to
fp itself. Then since ep ≤ fp for every p, it follows that a|b.

With the exponents the other way around the statement is false, e.g. 82|43 but
obviously 8 6 |4.

2. For each positive integer n, let us write Mn for the nth Mersenne number, that is,
Mn = 2n − 1.

(a) Show that whenever k|n then Mk|Mn.
(b) Show that if d divides two Mersenne numbers Mk and Mn with k < n, then it

divides Mn−k.

I won’t assign it but you might accept the following challenge: show that gcd(Mr,Ms) =
Mgcd(r,s).

ANSWER: For part (a), if n = kd then 2n − 1 = (2k)d − 1. But X − 1 divides Xd − 1
for every X, and when X = 2k this means Mk|Mn.

For part (b) note that d would certainly divide Mn −Mk = 2n − 2k = 2k · (2n−k − 1).
But the Mersenne numbers are all odd, so their divisors d are as well, i.e. they are coprime
to 2 (and its powers). Thus d would have to divide the other factor 2n−k − 1 = Mn−k.
(We can also reverse the reasoning: if d divides both Mn−k and Mk then it divides Mn.
Thus any pair among these three Mersenne numbers has the same gcd.)

For the challenge note that if n = kq + r, then by applying part (b) q times we
conclude gcd(Mn,Mk) = gcd(Mk,Mr). Thus we can carry out the very steps used in the
Euclidean Algorithm, always finding pairs ki, ni such that gcd(Mni

,Mki
) = gcd(Mn,Mk),

terminating only when ki|ni, at which point we know ki = gcd(n, k).

3. Suppose a and b are coprime integers, and that one of them is even and the other is
odd. Show that a− b and a3 + b3 are also coprime.

ANSWER: If these two integers have a common factor d then, modulo d, we have both
a ≡ b and a3 ≡ −b3. But of course if a ≡ b then a3 ≡ b3, so by transitivity we would also
have b3 ≡ −b3, or 2b3 ≡ 0. Now, since a and b have different parity, it follows that a− b is
odd, and so its divisor d must be as well. Thus 2 has an inverse mod d and we conclude
b3 ≡ 0.

In particular, if p is any prime divisor of d, then p divides b3 and hence b itself. But
since p|d|(a− b), that would mean p also divides a, which contradicts the assumption that
a and b are coprime. So there is no such p, which means d = 1, i.e. a− b and a3 + b3 are
coprime.



4. Twin primes are primes p and q which differ by 2. For example 11 and 13 are twin
primes. Prove that there are infinitely many primes which are NOT part of a twin-prime
pair.

ANSWER: See answers to Homework 5.

5. A vague but important question is: how far apart are the primes? That is, if we number
the primes in order,

p1 = 2, p2 = 3, p3 = 5, p4 = 7, p5 = 11, . . .

then can we estimate how big the gap pn+1 − pn is, compared to pn itself? Obviously the
size of that gap will vary: for example, if it turns out that the Twin Prime Conjecture is
true, then there will be infinitely many values of n for which pn+1 − pn is just 2. On the
other hand, there can be arbitrarily long gaps between the primes (see Theorem 3.5). But
the size of the gap from pn to pn+1 can be bounded by the size of pn:

(a) Find Bertrand’s Conjecture in the book. (This conjecture is known to be true.)
Use it to show that pn+1 − pn < pn,

(b) Find Legendre’s Conjecture in the book. (This conjecture is NOT yet known to
be true.) Show that if it’s true, then pn+1 − pn < 4

√
pn + 2.

(Researchers think that the gaps are never even close to the sizes shown in this
problem; it’s probably true that the gaps are never more than roughly log(pn)2.)

ANSWER: Bertrand’s Conjecture states (as a theorem) that for every integer k > 1
there is a prime between k and 2k. Taking k = pn shows us that the next prime, pn+1 is
less than 2pn, so that pn+1 − pn < pn, as desired.

If Legendre’s Conjecture turns out to be true, then we would argue as follows: let
k2 be the largest perfect square which is less than pn. The Conjecture would guarantee
that there is another prime between (k + 1)2 and (k + 2)2, and it can’t be as large as
(k + 2)2 − 1 = (k + 1)(k + 3) because that number is composite! So the gap betweenpn
and pn+1 would be smaller than the gap between k2 and (k+ 2)2; more precisely we would
have pn+1 − pn ≤ [(k + 2)2 − 2]− [k2 + 1] = 4k + 1 < 4

√
pn + 1.


