1. Find a solution to the congruence $x^{2}-5 x+39 \equiv 0(\bmod 77)$. (I'll give a few bonus points if you can find additional solutions, and a few more if you can demonstrate you have found all the solutions.)
ANSWER: We need $x^{2}-5 x+4 \equiv 0 \bmod 7$; two solutions are $x=1$ and $x=4$, and since 7 is prime all solutions must be congruent to one of these two modulo 7. Likewise we need $x^{2}-5 x+6=(x-2)(x-3) \equiv 0 \bmod 11$, which has just two solutions $x \equiv 2$ and $x \equiv 3$. So by the Chinese Remainder Theorem there will be four solutions modulo 77.

For example if $x \equiv 2 \bmod 11$ then $x=2+11 k$ for some integer $k$; this is congruent to 1 modulo 7 iff $-3 k \equiv-1 \bmod 7$, which requires $k \equiv 5 \bmod 7$, and then $x=2+11 k \equiv 57$ modulo 77 .

In exactly the same way we discover the other three solutions to be the congruence classes of 25,36 , and 46 modulo 77 .
2. Find all solutions to the congruence $x^{2} \equiv 44\left(\bmod 43^{2}\right)$.

ANSWER: Suppose $x^{2} \equiv 44$ modulo $43^{2}$. Then also $x^{2} \equiv 44 \equiv 1 \bmod 43$. Since 43 is prime there can only be two square roots of 1 and they are obviously $\pm 1$. Thus $x= \pm(1+43 k)$ for some integer $k$. Since $x^{2} \equiv 44$ modulo $43^{2}$, this expands to $1+86 k \equiv 44$, i.e. $86 k \equiv 43 \bmod 43^{2}$. Divide by 43 to conclude that $2 k \equiv 1 \bmod 43$, and then multiply by $2^{-1}=22$ to conclude $k \equiv 22 \bmod 43$, so that $x \equiv \pm(1+43 \cdot 22)= \pm 947$ modulo $43^{2}=1849$.
3. The number $N=5^{9}-1$ equals $4 \times 488281$. Find a proper divisor of 488281 .
(Hint: we have discussed the factors of the polynomials $X^{n}-1$.)
ANSWER: We know $X^{3}-1$ has $X-1$ as a factor; use $X=5^{3}$ to see $N$ has $124=4 \times 31$ as a factor, so that 31 divides $N / 4$. (Then $488281 / 31=15751$, which happens to factor as $19 \cdot 829$ but I don't think that's obvious.)

If you only thought to use this generic factorization with $X=5$ and $n=9$, then you could still discover
$488421=\left(5^{8}+5^{7}+5^{6}\right)+\left(5^{5}+5^{4}+5^{3}\right)+\left(5^{2}+5^{1}+5^{0}\right)=\left(5^{6}+6^{3}+1\right)\left(5^{2}+5+1\right)=15751 \cdot 31$
(In base-5 notation this is simply the observation that $111,111,111_{5}=1,001,001_{5} \times 111_{5}$.)
You could also use Fermat's method of factorization, which is treated in the book but which we discussed little (if at all) in class. If 488281 is a product of two factors $a \cdot b$ (obviously both odd), let $m=(a+b) / 2$ be the number in the middle between them and let $d=|m-a|=|m-b|$ be the distance from $m$ to these factors. Then $a=m+d$ and $b=m-d$, and so $488281=a b=m^{2}-d^{2}$. Fermat's idea was to try values of $m$, looking to see which make $m^{2}-488281$ a square. Clearly in this case we need $m$ larger than around 700 (actually we should start at $m=699$ ); for example if $m=700$ then $m^{2}-488281=1719$ is positive but not a perfect square. Note that $(m+1)^{2}-488281=$
$\left(m^{2}-488281\right)+(2 m+1)$, which means we may quickly compute successive values of $m^{2}-488281$ by adding consecutive odd numbers: when $m=701$ this difference equals $1719+1401=3120$ (which is not a square); for the next $m$ it equals $3120+1403=4523$ (not a square); then come $5928,7335,8744,10155,11568,12983$, and finally $14400=120^{2}$ when $m=709$. So $488281=709^{2}-120^{2}=829 \cdot 589$. As it turns out, 829 is prime but 589 can also be factored using the Fermat method: on the very first step we start with $m=25$ and note that $m^{2}-589=36$ is a square, so $589=25^{2}-6^{2}=19 \cdot 31$, giving us some additional factors of 488281 . I didn't expect anyone to try this method but at least one person did and you are welcome to try it in the future.
4. Show that for every integer $n$ we have $\phi\left(n^{2}\right)=n \phi(n)$. (Here, $\phi$ is the "Euler phifunction".)
ANSWER: One way to compute $\phi\left(n^{2}\right)$ is as

$$
\phi\left(n^{2}\right)=n^{2} \cdot \prod_{p \mid n^{2}}\left(1-\frac{1}{p}\right)
$$

the product taken over all primes dividing $n^{2}$. But those are the same primes as the primes dividing $n$ itself, so that $\phi\left(n^{2}\right)=n \cdot n \cdot \prod_{p \mid n}\left(1-\frac{1}{p}\right)=n \cdot \phi(n)$.

You could also compute $\phi\left(n^{2}\right)$ as the number of integers in the set $S=\left\{0,1, \ldots, n^{2}-1\right\}$ which are coprime to $n^{2}$. First note that we can also describe $S$ as $\{x=a n+b \mid 0 \leq$ $a, b<n\}$ (by the division algorithm); second note that $x \perp n^{2}$ iff $x \perp n$, and that $\operatorname{gcd}(x, n)=\operatorname{gcd}(b, n)$. Thus the set of integers we are trying to count is exactly the set

$$
\{x=a n+b \mid 0 \leq a<n \text { and } b \in T\}
$$

where $T$ is the set of integers from 0 to $n-1$ which are coprime to $n$. There are $n$ such $a$ and $\phi(n)$ such $b$, giving $n \phi(n)$ such integers $x$.
5. Show that if $p$ is a prime and $p \equiv 1 \bmod 4$, then the integer $x=\left(\frac{p-1}{2}\right)$ ! satisfies $x^{2} \equiv-1$ $\bmod p$. (Hint: use the theorem that has factorials in it! You might want to consider an example like $p=13$ to see what's going on.)

ANSWER: By Wilson's theorem, $(p-1)!\equiv-1 \bmod p$. Now, $(p-1)$ ! is the product of a total of $p-1$ terms, half of which multiply out to be $x$. The other half of the terms are the negatives of these modulo $p$; pairing each integer $n \leq(p-1) / 2$ with its negative shows that the product of these other integers will be congruent to $(-1)^{(p-1) / 2}$. $((p-1) / 2)!=(-1)^{(p-1) / 2} x$. So in this way we have rewritten Wilson's Theorem to say $-1 \equiv(-1)^{(p-1) / 2} x^{2} \bmod p$. Since $p \equiv 1 \bmod 4$, that exponent is even, and we are left with $x^{2} \equiv-1 \bmod 4$.

Note that this shows -1 has a square root modulo such primes. It's not hard to show that -1 does NOT have a square root $\bmod p$ when $p \equiv 3 \bmod 4$; for example, no square is congruent to $-1 \bmod 7$. What the proof above does show for such primes is that $x^{2} \equiv+1$, and as you know the only integers whose square is 1 modulo a prime are +1 and -1 , so
we deduce that $x \equiv \pm 1 \bmod p$ whenever $p \equiv 3 \bmod 4$. It is an extremely subtle project to determine which of these primes make $x \equiv 1$ and which make $x \equiv-1$ !

EXTRA CREDIT. In our discussion of cryptography we imagined Alice encrypting a message by replacing each integer $a$ with another integer $b \equiv a^{d}$ modulo $N$. (You may recall that the values of $b, d$, and $N$ could be made public to everyone without compromising security!) Bob would then decrypt the message by re-computing $a$ from $b$; he would do this by computing $a \equiv b^{e} \bmod N$ for some exponent $e$ that only he could figure out, because only he knew the factorization of $N$.

Well, here is your chance to play the role of Eve. Suppose Alice and Bob have announced to the world that messages to Bob will be encrypted using $N=1717$ and $d=3$. Bob assumes you cannot factor this $N$, but you have noticed the prime-factorization $1717=17 \cdot 101$. Very well! Use that information to find an integer $e$ that has the feature that

$$
\text { for all integers } a, b \quad\left(b \equiv a^{3} \bmod 1717\right) \Rightarrow\left(a \equiv b^{e} \bmod 1717\right)
$$

ANSWER: We want to have $a=b^{e}=\left(a^{3}\right)^{e}=a^{3 e}$. From Euler's Theorem we know that $a^{\phi(N)} \equiv 1 \bmod N$ whenever $a$ is coprime to $N$, so we will certainly have what we want as long as $3 e \equiv 1$ modulo $\phi(N)$. As far as anyone knows, the only way to compute $\phi(N)$ is to first factor $N$, but in this case we can do that easily. (Bob should have chosen a number $N$ that was harder to factor!) Since $N=17 \cdot 101$ we get $\phi(N)=16 \cdot 100=1600$. And now it is easy to solve $3 e \equiv 1 \bmod \phi(N)$ : divide 1600 by 3 to see $1600=3 \cdot 533+1$, so $3 \cdot 533 \equiv-1 \bmod 1600$, and thus the inverse of 3 is $-533=1067$.

Other values of $e$ also work. For example you could use the Chinese Remainder Theorem to note that it is necessary and sufficient to have $a \equiv a^{3 e}$ modulo 17 and modulo 101. By the Fermat Theorem the former is true for all $a$ as long as $3 e \equiv 1 \bmod 16$, and the latter is true for all $a$ if $3 e \equiv 1 \bmod 100$. Thus it suffices to have $3 e-1$ be divisible by $\operatorname{lcm}(16,100)=400$. So we need only solve $3 e \equiv 1 \bmod 400$, which requires $e=3^{-1} \equiv-133 \equiv 267$ modulo 400. (This includes the previous result $e=1067$.)

For example, Alice would encrypt a 2 as $2^{3}=8$; you (Eve) can now decrypt this: seeing an 8 you would know the original plaintext would have been $8^{267}$ which can be computed modulo $N$ with eight squarings:

$$
8^{2} \equiv 64, \quad 8^{4} \equiv 64^{2} \equiv 662, \quad \ldots, \quad 8^{256} \equiv 239
$$

and then three more multiplications:

$$
8^{267}=8^{1} \cdot 8^{2} \cdot 8^{8} \cdot 8^{256} \equiv 2
$$

