
Math 328K (Rusin) — Exam 2 ANSWERS, Apr 20, 2017

1. Find a solution to the congruence x2 − 5x + 39 ≡ 0 (mod 77). (I’ll give a few bonus
points if you can find additional solutions, and a few more if you can demonstrate you
have found all the solutions.)

ANSWER: We need x2−5x+ 4 ≡ 0 mod 7; two solutions are x = 1 and x = 4, and since
7 is prime all solutions must be congruent to one of these two modulo 7. Likewise we need
x2 − 5x + 6 = (x − 2)(x − 3) ≡ 0 mod 11, which has just two solutions x ≡ 2 and x ≡ 3.
So by the Chinese Remainder Theorem there will be four solutions modulo 77.

For example if x ≡ 2 mod 11 then x = 2 + 11k for some integer k; this is congruent to
1 modulo 7 iff −3k ≡ −1 mod 7, which requires k ≡ 5 mod 7, and then x = 2 + 11k ≡ 57
modulo 77.

In exactly the same way we discover the other three solutions to be the congruence
classes of 25, 36, and 46 modulo 77.

2. Find all solutions to the congruence x2 ≡ 44 (mod 432).

ANSWER: Suppose x2 ≡ 44 modulo 432. Then also x2 ≡ 44 ≡ 1 mod 43. Since
43 is prime there can only be two square roots of 1 and they are obviously ±1. Thus
x = ±(1+43k) for some integer k. Since x2 ≡ 44 modulo 432, this expands to 1+86k ≡ 44,
i.e. 86k ≡ 43 mod 432. Divide by 43 to conclude that 2k ≡ 1 mod 43, and then multiply
by 2−1 = 22 to conclude k ≡ 22 mod 43, so that x ≡ ±(1 + 43 · 22) = ±947 modulo
432 = 1849.

3. The number N = 59 − 1 equals 4× 488281. Find a proper divisor of 488281.
(Hint: we have discussed the factors of the polynomials Xn − 1.)

ANSWER: We know X3−1 has X−1 as a factor; use X = 53 to see N has 124 = 4×31
as a factor, so that 31 divides N/4. (Then 488281/31 = 15751, which happens to factor as
19 · 829 but I don’t think that’s obvious.)

If you only thought to use this generic factorization with X = 5 and n = 9, then you
could still discover

488421 = (58+57+56)+(55+54+53)+(52+51+50) = (56+63+1)(52+5+1) = 15751 ·31

(In base-5 notation this is simply the observation that 111, 111, 1115 = 1, 001, 0015×1115.)

You could also use Fermat’s method of factorization, which is treated in the book but
which we discussed little (if at all) in class. If 488281 is a product of two factors a · b
(obviously both odd), let m = (a + b)/2 be the number in the middle between them and
let d = |m − a| = |m − b| be the distance from m to these factors. Then a = m + d
and b = m − d, and so 488281 = ab = m2 − d2. Fermat’s idea was to try values of m,
looking to see which make m2 − 488281 a square. Clearly in this case we need m larger
than around 700 (actually we should start at m = 699); for example if m = 700 then
m2 − 488281 = 1719 is positive but not a perfect square. Note that (m+ 1)2 − 488281 =



(m2 − 488281) + (2m + 1), which means we may quickly compute successive values of
m2 − 488281 by adding consecutive odd numbers: when m = 701 this difference equals
1719 + 1401 = 3120 (which is not a square); for the next m it equals 3120 + 1403 = 4523
(not a square); then come 5928, 7335, 8744, 10155, 11568, 12983, and finally 14400 = 1202

when m = 709. So 488281 = 7092 − 1202 = 829 · 589. As it turns out, 829 is prime but
589 can also be factored using the Fermat method: on the very first step we start with
m = 25 and note that m2 − 589 = 36 is a square, so 589 = 252 − 62 = 19 · 31, giving us
some additional factors of 488281. I didn’t expect anyone to try this method but at least
one person did and you are welcome to try it in the future.

4. Show that for every integer n we have φ(n2) = nφ(n). (Here, φ is the “Euler phi-
function”.)

ANSWER: One way to compute φ(n2) is as

φ(n2) = n2 ·
∏
p|n2

(
1− 1

p

)
,

the product taken over all primes dividing n2. But those are the same primes as the primes
dividing n itself, so that φ(n2) = n · n ·

∏
p|n(1− 1

p ) = n · φ(n).

You could also compute φ(n2) as the number of integers in the set S = {0, 1, . . . , n2−1}
which are coprime to n2. First note that we can also describe S as {x = an + b | 0 ≤
a, b < n} (by the division algorithm); second note that x ⊥ n2 iff x ⊥ n, and that
gcd(x, n) = gcd(b, n). Thus the set of integers we are trying to count is exactly the set

{x = an+ b | 0 ≤ a < n and b ∈ T}

where T is the set of integers from 0 to n− 1 which are coprime to n. There are n such a
and φ(n) such b, giving nφ(n) such integers x.

5. Show that if p is a prime and p ≡ 1 mod 4, then the integer x =
(
p−1
2

)
! satisfies x2 ≡ −1

mod p. (Hint: use the theorem that has factorials in it! You might want to consider an
example like p = 13 to see what’s going on.)

ANSWER: By Wilson’s theorem, (p − 1)! ≡ −1 mod p. Now, (p − 1)! is the product
of a total of p − 1 terms, half of which multiply out to be x. The other half of the
terms are the negatives of these modulo p; pairing each integer n ≤ (p − 1)/2 with its
negative shows that the product of these other integers will be congruent to (−1)(p−1)/2 ·
((p − 1)/2)! = (−1)(p−1)/2x. So in this way we have rewritten Wilson’s Theorem to say
−1 ≡ (−1)(p−1)/2x2 mod p. Since p ≡ 1 mod 4, that exponent is even, and we are left
with x2 ≡ −1 mod 4.

Note that this shows −1 has a square root modulo such primes. It’s not hard to show
that −1 does NOT have a square root mod p when p ≡ 3 mod 4; for example, no square is
congruent to −1 mod 7. What the proof above does show for such primes is that x2 ≡ +1,
and as you know the only integers whose square is 1 modulo a prime are +1 and −1, so



we deduce that x ≡ ±1 mod p whenever p ≡ 3 mod 4. It is an extremely subtle project to
determine which of these primes make x ≡ 1 and which make x ≡ −1!

EXTRA CREDIT. In our discussion of cryptography we imagined Alice encrypting a
message by replacing each integer a with another integer b ≡ ad modulo N . (You may recall
that the values of b, d, and N could be made public to everyone without compromising
security!) Bob would then decrypt the message by re-computing a from b; he would do this
by computing a ≡ be mod N for some exponent e that only he could figure out, because
only he knew the factorization of N .

Well, here is your chance to play the role of Eve. Suppose Alice and Bob have
announced to the world that messages to Bob will be encrypted using N = 1717 and
d = 3. Bob assumes you cannot factor this N , but you have noticed the prime-factorization
1717 = 17 · 101. Very well! Use that information to find an integer e that has the feature
that

for all integers a, b
(
b ≡ a3 mod 1717

)
⇒ (a ≡ be mod 1717)

ANSWER: We want to have a = be = (a3)e = a3e. From Euler’s Theorem we know that
aφ(N) ≡ 1 mod N whenever a is coprime to N , so we will certainly have what we want as
long as 3e ≡ 1 modulo φ(N). As far as anyone knows, the only way to compute φ(N) is to
first factor N , but in this case we can do that easily. (Bob should have chosen a number
N that was harder to factor!) Since N = 17 · 101 we get φ(N) = 16 · 100 = 1600. And
now it is easy to solve 3e ≡ 1 mod φ(N): divide 1600 by 3 to see 1600 = 3 · 533 + 1, so
3 · 533 ≡ −1 mod 1600, and thus the inverse of 3 is −533 = 1067.

Other values of e also work. For example you could use the Chinese Remainder
Theorem to note that it is necessary and sufficient to have a ≡ a3e modulo 17 and modulo
101. By the Fermat Theorem the former is true for all a as long as 3e ≡ 1 mod 16,
and the latter is true for all a if 3e ≡ 1 mod 100. Thus it suffices to have 3e − 1 be
divisible by lcm(16,100)=400. So we need only solve 3e ≡ 1 mod 400, which requires
e = 3−1 ≡ −133 ≡ 267 modulo 400. (This includes the previous result e = 1067.)

For example, Alice would encrypt a 2 as 23 = 8; you (Eve) can now decrypt this:
seeing an 8 you would know the original plaintext would have been 8267 which can be
computed modulo N with eight squarings:

82 ≡ 64, 84 ≡ 642 ≡ 662, . . . , 8256 ≡ 239

and then three more multiplications:

8267 = 81 · 82 · 88 · 8256 ≡ 2


