1. Give a formula for the number of positive divisors of a number \(n \) based on its factorization into primes. That is, if
\[
 n = p_1^{m_1} p_2^{m_2} \cdots p_k^{m_k}
\]
then determine how many divisors \(n \) has.

ANSWER: The divisors of \(n \) are precisely the integers whose prime factorization is of the form
\[
 n = p_1^{m_1} p_2^{m_2} \cdots p_k^{m_k}
\]
for some non-negative integers \(m_i \leq n_i \). So there are \(n_1 + 1 \) possible values for \(m_1 \) (it could be any of \(0, 1, 2, \ldots, m_1 - 1, m_1 \)), and independently we may choose any of \(n_2 + 1 \) values for \(m_2 \), etc. The total number of divisors is then the total number of choices for the sequence \((m_1, m_2, \ldots, m_k)\), which is then
\[
(n_1 + 1)(n_2 + 1)\ldots(n_k + 1)
\]

2. Show that if \(a \) and \(b \) are coprime integers and \(a \cdot b \) is a perfect cube, then \(a \) and \(b \) are perfect cubes too. The corresponding statement for squares is almost true, but there’s a little subtlety; can you find it?

ANSWER: Obviously if an integer \(n \) has prime factorization
\[
 n = p_1^{m_1} p_2^{m_2} \cdots p_k^{m_k}
\]
then the \(r \)th power of \(n \) has prime factorization
\[
 n^r = p_1^{rm_1} p_2^{rm_2} \cdots p_k^{rm_k}
\]
and thanks to the Fundamental Theorem of Arithmetic that is the only decomposition \(n^r \) can have. So \(r \)th powers can be recognized from their prime decomposition: all exponents must be multiples of \(r \). So for example if \(a \) and \(b \) are positive integers whose product \(ab \) is a cube, then all the exponents in the prime factorization of \(ab \) are multiples of \(3 \). On the other hand, the prime factorization of \(ab \) may be obtained by simply pasting together the factorizations of \(a \) and \(b \) separately, *because* those two integers are coprime. Thus each exponent in the decompositions of \(a \) and \(b \) are themselves multiples of \(3 \), meaning \(a \) and \(b \) are perfect cubes.

Replace “cube” with “square”, and “3” with “2”, and the previous paragraph again stands. But the original question didn’t specify that the integers are positive; if for example \(a = -4 \) and \(b = -9 \) then \(ab \) is a perfect square but \(a \) and \(b \) are not!

3. Show that for every integer \(n > 1 \), \(n^3 + 1 \) is composite. (Hint: you may find a few examples to be instructive. Try \(n = 1, 2, 4, 6, \) and \(16 \).)
ANSWER: For every \(n \), \(n^3 + 1 = (n + 1)(n^2 - n + 1) \). Since for every number \(n > 1 \) both of those factors are greater than 1, this provides a nontrivial factorization of \(n^3 + 1 \).

4. **Twin primes** are primes \(p \) and \(q \) which differ by 2. For example 11 and 13 are twin primes. Prove that there are infinitely many primes which are NOT part of a twin-prime pair. How many primes \(p \) are there for which \(p, p + 2, \) and \(p + 4 \) are all prime?

ANSWER: I postponed this problem until the following week so that you would have Dirichlet’s Theorem at your disposal. A prime \(p \) is part of a twin-prime pair if either \(p - 2 \) or \(p + 2 \) is also prime, so what we want in this problem is an infinite set of primes \(p \) for which both \(p - 2 \) and \(p + 2 \) are composite. We might, for example, look for primes \(p \) for which \(p - 2 \) is a multiple of 3 (other than 3 itself) and \(p + 2 \) is a multiple of 5 (other than 5 itself). In other words we want primes \(p \) (other than 5 or 3) for which

\[
p \equiv +2 \pmod{3} \quad \text{and} \quad p \equiv -2 \pmod{5}
\]

By the Chinese Remainder Theorem these two congruences together simply state that \(p \equiv 8 \pmod{15} \). Since \(\gcd(8, 15) = 1 \), Dirichlet’s Theorem guarantees there are infinitely many such primes. (The first few are 23, 53, 83, 113, 173, 223, . . .).

5. For each integer \(n \) let \(C_n \) denote the central binomial coefficient \(C_n = \binom{2n+1}{2n} \).

Compute \(C_0, C_1, C_2 \). Show that for every integer \(M \), \(\gcd(M, C_n) \) is divisible by all the prime divisors of \(M \) that lie between \(2^n \) and \(2^{n+1} \).

ANSWER: The definition of the binomial coefficient in terms of factorials may be written this way:

\[
m! (n - m)! \binom{n}{m} = n!
\]

If \(p \) is any prime less than or equal to \(n \) then it divides the number on the right, and hence must divide one of the three factors on the left. If on the other hand \(p \) is larger than both \(m \) and \(n - m \) then \(p \) will not divide \(m! \) nor \((n - m)! \); in that case it must divide the binomial coefficient. In the special case that \(n = 2m \), this means the binomial coefficient is divisible by every prime which lies (strictly) between \(m \) and \(n \). In particular, my \(C_n \) above is divisible by every prime between \(2^n \) and \(2^{n+1} \). (That’s all the the primes which are \(n + 1 \) bits long when expressed in binary. That’s a lot of primes!)

Of course that means every prime divisor of \(M \) which is in that same range will then divide \(\gcd(M, C_n) \), as was to be shown.

The first few of these numbers are 1, 2, 6, 70, 12870, 601080390.

A small variation of the numbers \(C_n \) may be used instead; look up the Catalan numbers.

Let me comment about that parenthetical part. It’s very easy to find all the prime divisors of a number \(M \). Compute, in turn, each of the \(\gcd(M, C_1) \), \(\gcd(M, C_2) \), \(\gcd(M, C_3) \), . . .

These will report to you in turn (the product of) all of \(M \)’s 2-bit prime divisors, then its
3-bit prime divisors, then its 4-bit prime divisors, etc. And remember, it’s very easy to compute a \(\gcd \) using the Euclidean algorithm. (Roughly speaking there are only about \(\log_2(M) \) steps to each such \(\gcd \) computation.) And even though the numbers \(C_n \) get large fast, we don’t ever really need them: if \(C_n \equiv X \mod M \) then \(\gcd(M, C_n) = \gcd(M, X) \), so we never really need to work with numbers bigger than \(M \) itself. So I could write a very fast computer program to find the prime divisors of any integer \(M \) is I could just figure out a way to insert \(C_n \) quickly into the program in the first place, or more precisely to have my computer compute \(C_n \) (modulo \(M \)) in a relatively few steps. I’m thinking of numbers \(M \) of say a couple hundred digits; that means I might need \(C_{1000} \). What’s the fastest way to compute this number (modulo any integer \(M \), say)?