MATH 343 (Rusin) — FINAL ANSWERS — May 11 2012
As usual, your answers may be very different from the answers shown here and yet
still be quite correct.
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Answer: Let S(n Z and T'(n) = ;%5, and let P(n) be the statment “S(n) =

T(n)”. (Note that S(n ) and T( ) are NUMBERS, while P(n) is a SENTENCE.)

P(1) is true because S(1) = T(1) : they’re both 1.

If P(k—1) is a true statement for some integer k, then P(k) is also true: S(k) =
s+s+...+ G 11)k + k(k1—|—1) is obviously the same as S(k — 1) + m, while T'(k)

exceeds T'(k — 1) by k—+1 — bl = K (,cl?:]g}r)l()lil) = k(lcl-&-l) as well. That is, we have
S(k)=S(k-1)+ k(k—l—l) =T(k-1)+ D = T'(k), as desired.

Thus P(n) is a true statement for all natural numbers n, by the Principle of Mathe-
matical Induction.

2. If a and b are integers we will say that a is entangled with b if there exist positive
integers m and n with a|b™ and b|a™.

(a) Show that 12 is entangled with 6, but 12 is not entangled with 8.

(b) Give a description of the set of all integers entangled with 12.

(c) Extra Credit: Show that entanglement is transitive, that is, if a is entangled
with b and b is entangled with c then a is entangled with c.

Answer: (a) 612! and 12|6%; also 8|122, but no power of 8 is a multiple of 12 because of
the Fundamental Theorem of Arithmetic: 3 divides 12 but does not divide any power of 2.

(b) The numbers entangled with 12 are all the numbers of the form n = 2"3% with
positive integers r and s. (Certainly 12|n? and n|12"7% so these are all entangled with 12.
No integer divisible by other primes is entangled with 12 since such an n cannot divide a
power of 12 — the same FTA constraint. Likewise no integer divisible by fewer primes is
entangled with 12 because 12 cannot divide a power of 2 nor a power of 3.

(c) If a is entangled with b and b is entangled with ¢ then we have four positive integers
p,q,7,s with alb?,bla?,b|c”, c[b®. But then a|cP” and c|a?®, so a and c are entangled with
each other.

In fact, (c) is just part of the proof of the statement that: entanglement is an equiva-
lence relation. What the members of each equivalence class have in common is precisely the
fact that they have the same prime divisors (to different multiplicities); (b) is an example
of this.



3. Let S =1{1,2,3,4,5,6,7,8,9,10,11,12} and let f : S — S be the function defined by
the following table:

1 23 4 5 6 7 8 9 10 11 12
fx): 6 4 9 11 12 10 1 7 5 8 2 3
Notice that f is one-to-one and onto, i.e. it is a permutation.
(a) Find a positive integer n so that the n-fold composite fW) = fofofo...ofis
the identity function.
(b) Express f as a product of disjoint cycles.

Answer: (b) f=(2411) (39512) (161087).

(a) The order of f is thus the least common multiple of 3, 4, and 5 : £ is the identity
permutation.

This problem should help you recognize the power of Group Theory! Imagine how
long it would have taken you to find that “60” just starting with f itself in (a)!

4. Suppose G is an abelian group. Let H = {x?;x € G}, that is, H is the set of squares of
elements in G. Show that H is a subgroup of G.

(I will also give a little extra credit if you can show that in a non-abelian group G,
the set H need not be a subgroup of G.)

Answer: Well e = €2 is in H. And H is closed under inversion: if h € H is a square, say

h = 22, then h~! € H too: it’s the square of z 1.

Products are just a bit more subtle: if h,k € H then each of them is a square, say
h = a2,k = b2. But then hk = a?b? = aabb; since G is abelian, this is equal to abab = (ab)?;
thus hk is a square too, and so it’s in H.

In some nonabelian groups the result continues to be true. (For example, if |G| is odd,
then Lagrange’s theorem can be used to show that every element is a square, i.e. H = G.)
But in other (nonabelian) groups, the same set H is not a subgroup. For example, it’s
not hard to see that in the symmetric groups, the elements which are squares are those
whose cycle decompositions include an even number of k-cycles for each even integer k.
Thus e.g. (12)(3456) is not a square. But it can be written as a product of squares,
e.g. ((123)(456))2 - (14365)2.

5. If G is a group and g € G, then we may define a function f : G — G by f(x) = g~ lxg.
(a) Show that f is an isomorphism.
(b) If ¢’ is another element of G then f’ may be similarly defined by f’(x) = (¢') " 'zg’.
Show that f and f’ are the same functions iff g and ¢’ lie in the same coset in G/Z(G)

Answer: (a) This f is a homomorphism because for all z,y € G, f(z)f(y) = g txg -

g 'yg = g Hxy)g = f(ry). It’s also one-to-one and onto because there is an inverse
function h : G — G defined by h(z) = gzg~1.

(b) Two functions G — G are equal iff they produce the same output for every input
r € G. But f(z) = f(x) iff g tag = (¢') ~lxg’; multiplying by ¢’ on the left and by g~! on
the right, we see this condition is equivalent to (¢’¢™1)x = z(g’g™!), that is, it’s equivalent
to the statement that 2 commutes with h = ¢’¢g~!. Thus, the statement that f(z) = f'(x)



for all x € G is equivalent to the statement that h lies in the center of G. But since
g’ = hg, this is in turn equivalent to the fact that the cosets Z(G)g and Z(G)g' = Z(G)hg
are equal.

Remark: an isomorphism from a group to itself is called an automorphism; the collec-
tion of all automorphisms of G is a group called Aut(G). The automorphisms described in
this problem are called the inner automorphisms, and they form a subgroup of Aut(G); this
subgroup Inn(G) is isomorphic to G/Z(G). (Inn(G) is also normal in Aut(G); the quo-
tient group Aut(G)/Inn(G) is unsurprisingly but somewhat misleadingly called Out(G),
the group of outer automorphisms of G.)

6. Show that in the ring Zgg, 35 is a multiple of 77 . (The phrase “is a multiple of” has
the same definition in any ring that it has in the ring of integers.)

Answer: 3-77 = 231 =35+ 2-98, so [3]gs - [77]os = [35]9s, making 35 be a multiple of 77.

How did T get this 3 ? Precisely what is needed is an element = € Zgg for which
[77]x = [35], i.e. an integer X with 77X = 35 (mod 98) , which in turn means there is a
pair of integers X, Y with 77X = 354 98Y. You might recognize this as a Bezout identity,
so use the Euclidean Algorithm to find X, Y.

7. Suppose R is a (commutative) ring. Let N be the set of nilpotent elements, that is,
N = {r € R;r* = 0 for some positive integer k}.

Show that N is an ideal of R.

Answer: The harder part, surprisingly, is to show that N is closed under the taking of
sums and differences. But if x,4 € N then there are integers k, m with z* = y™ = 0. In
that case, use the binomial theorem to expand a power (z £ y)" = > b, ;z'y"*; as long
as n > k+m — 1 it must be true for every ¢ that either ¢ > k or n — ¢ > m, in which
case either 2° or y"~* is zero. (You might understand this example better if you tried
expanding (z + y)® when 22 = y® = 0.)

We also note that if z¥ = 0 and r € R then (rz)* = r¥2* = 0 so 7k € N too.

8. Let R = Zy x Z3, that is, R is the set of all ordered pairs (a,b) where a € Zy and b € Zs.
We can define addition and multiplication on R by doing the operations componentwise,
that is, (a,b) 4+ (c,d) is defined to be (a + ¢,b + d), and (a,b) * (¢,d) is defined to be
(a*c,bxd),

(a) List the six elements of R.

(b) Construct the addition and multiplication tables for R.

(c) Show that R is isomorphic to the ring Zg. (Hint: You might want to think about
what ¢(1) has to be, where ¢ : Zg — R is the desired isomorphism.)

Answer: The elements of R are a = ([0]2,[0]3),b = ([0]2,[1]3),¢ = ([0]2,[2]3),d =
([1]2,[0]3),e = ([1]2,[1]3), f = ([1]2,[2]3). You can compute their sums and products di-
rectly from the definition I gave in the problem; for example e+ f = ([1]2, [1]3)+([1]2, [2]3) =
([1]2 + [1]2, [1]3 + [2]3) = ([0]2,[0]3). Thus for example you quickly realize that a will be



the identity for addition, that addition in R is commutative, etc. Here are the resulting
tables:

a b ¢ d e f a b ¢ d e f

+ - - - - - - £ - - = - - -

a | a b ¢ d e f a | a a a a a a
b | b ¢ a e f d b | a b ¢ a b c
c | ¢ a b f d e c | a ¢ b a ¢ b
d | d e f a b ¢ d | a a a d d d
e | e f d b ¢ a e | a b ¢ d e f
f | f d e ¢ a b f |l a ¢ b d f e

In particular, e is the identity element for multiplication. Since any homomorphism of
rings takes 1 to 1, we would have to have ¢([1]g) = e = ([1]2, [1]3); but then ¢ is completely
determined: ¢(2) = ¢(1+ 1) = ¢(1) + ¢(1) = e + e = ¢, and likewise ¢(3) = d,p(4) =
b, ¢(5) = f, and of course ¢(0) = a. If you reshuffle the rows and columns of the operation
tables of R to match this, you will see the addition and multiplication tables of Zg pop
out!

More generally, if gcd(m,n)=1, then the rings Z,,, and Z,, x Z, are isomorphic;
the isomorpism is given by ¢([x]mn) = ([%]m, [z]n). This leads to the Chinese Remainder
Theorem.

EXTRA CREDIT: In an episode of Futurama, rebroadcast just last night, about a dozen
characters have swapped their minds into each other’s bodies, two people at a time, re-
sulting in a very complex permutation. However, a quirk in the mind-swapping machine
prevents it from working on any particular pair of bodies a second time. Fortunately the
30-th century Harlem Globetrotters make the claim that, no matter what the permutation,
the minds can all be restored using the machine — despite this quirk — using at most two
additional bodies (which are supplied by Curly Joe and Sweet Clyde Dixon).

Lrrr, ruler of the planet Omicron Persei Eight, commands you to interpret the situation
in group-theoretic terms, state the Globetrotter claim as a conjecture, and prove it.

Answer: Maybe I should have set the stage a little better. (Sorry, I created this Extra
Credit question after the show at about 3am!) The show’s characters wish to reunite their
minds with their bodies, but the obvious solution — swapping back the minds, one pair of
bodies at a time, reversing the order of the original scrambling — is prohibited by the quirk
of the machine. A new set of permutations is needed.

Mathematically, what we need is what I shall call the Futurama Theorem: every
permutation in S, may be written as a product of distinct transpositions (i.e. 2-cycles)
(a,b) in S, 1o where either b=mn+ 1 or b = n + 2. (In particular, these transpositions do
not lie in S,,, so the quirk of the machine will not stand in the way — these are pairs of
bodies which have not swapped minds before; distinctness means that in addition, each of
these new swaps involves a different pair of bodies.)

The proof is quite easy: first write the permutation in S,, as a product of disjoint
cycles (as in problem 3b). Then write these cycles as products of transpositions using



y=mn+1or z=n+ 2 as one of their terms, and an entry from the cycle as their other
term. Specifically, note that

(1y)n2)n—12)...(22)(12)(ny)

will equal (123...7n)(yz). Similarly (with a change of labels) we can find a product of our
special transpositions which is equal to any product o - (y z) of a cycle in S,, with (y z).
Since (y z) commutes with all these cycles, we can insert them into a product at will.
This is perhaps best explained by example. Consider the permutation of problem 3:
f=(2411)(39512) (1610 8 7). We first write this as a product

f=(z) 241102 (9512)(yz) (161087 2)

and then use the general pattern shown above for the three original cycles: f =

(y2) 2y)(112)(42)(22)(11y) By)(122)(52)(92)(32)(12y) (1y)(7 2)(82)(102)(6 2)(1 2)(7 y)

I invite you to confirm that all the transpositions involved are distinct, that each involves
either y or z (and so does not duplicate any of the transpositions used to create f in the
first place), and of course that the product really equals f.

So it is easy to restore all the minds to all the right bodies; the total number of swaps
needed is at most the number of moved minds, plus twice the number of cycles (orbits),
plus 1. Once again, the genius Globetrotters have saved the day!

As T said on the exam, thanks for a great semester! I had a lot of fun and hope you
did too.



