
Math 343K (Rusin) Exam 1, Mar 2, 2012: SOME POSSIBLE ANSWERS

1. The perfect squares are the numbers in the familiar sequence 1, 4, 9, 16, . . .. Show that

the sum of the first n perfect squares is
n(n + 1)(2n + 1)

6 .

Answer: Let S(n) = 1 + 4 + . . . + n2 and T (n) = n(n + 1)(2n + 1)/6, and let P (n) be
the statment “S(n) = T (n)”. (Note that S(n) and T (n) are NUMBERS, while P (n) is a
SENTENCE.)

P (1) is true because S(1) = T (1) = 1.
If P (k − 1) is a true statement for some integer k, then P (k) is also true: S(k) =

1+4+ . . .+(k−1)2+k2 is obviously the same as S(k−1)+k2, while T (k) exceeds T (k−1)
by k(k+1)(2k+1)/6−(k−1)k(2(k−1)−1)/6 = (k/6)((2k2+3k+1)−(2k2−3k+1)) = k2

as well. That is, we have S(k) = S(k − 1) + k2 = T (k − 1) + k2 = T (k), as desired.
Thus P (n) is a true statement for all natural numbers n, by the Principle of Mathe-

matical Induction.

2. Prove that if a, b, c are integers and gcd(a, b) = gcd(a, c) = 1 then gcd(a, bc) = 1.

Answer: Suppose d is a common divisor of a and bc. If d > 1 then d is divisible by some
prime p. But then p|bc and so by Euclid’s lemma, p must divide either b or c. On the
other hand, p|d and d|a means p|a too, so p is a common divisor either of a and b, or of
a and c. But both those pairs have no common divisor larger than 1, a contradiction. So
d = 1, and thus gcd(a, bc) = 1.

Remark: it is cumbersome to say anything useful about gcd(a, bc) when both gcd(a, b)
and gcd(a, c) are greater than 1.

3. In this problem, assume that a, b,m, n, x, y are all integers, with mx + ny = 1.
3a. Show that gcd(m,n) = 1 and that ny ≡ 1 (mod m).

Answer: Any common divisor of m and n would divide both mx and ny and hence their
sum, mx + ny, which is 1. So the common divisors can only be ±1.

ny differs from 1 by mx, which is a multiple of m

3b. Show that u = any + bmx satisfies both congruences u ≡ a (mod m) and u ≡
b (mod n).

Answer: Working first modulo m, we have already seen ny ≡ 1, so any ≡ a. On the other
hand, m ≡ 0, so bmx ≡ 0 too. Adding shows u = (any + bmx) ≡ (a + 0) = a. The proof
that u ≡ b (mod n) is nearly identical.

Note: By Bezout’s theorem, given any coprime pair m,n we can always find such an
x and y. Thus whenever gcd(m,n) = 1, we can always find integers u with u ≡ a (mod m)
and u ≡ b (mod n), no matter what a and b. This result is called the Chinese Remainder
Theorem.

3c. Find four distinct congruence classes u ∈ Z77 with u2 ≡ 1 (mod 77). (Hint You need
u to be congruent to +1 or to −1 modulo 11, and likewise modulo 7.)



Answer: Using the hint, we look for integers u which are on the one hand congruent
to either +1 or −1 modulo 11, and which are on the other hand congruent to either
+1 or −1 modulo 7. Obviously +1 and −1 are candidates. To get another, we might
want an integer u which is, say, congruent to +1 modulo 11 but congruent to −1 modulo
7. Well gcd(7, 11) = 1 so we may use the ideas of 3b: a Bezout equation we can use is
7 ·(3)+11 ·(−2) = 1, from which we obtain the solution u = (1)(7)(3)+(−1)(11)(−2) = 43.
Similarly u = −43 ≡ 34 works.

Remark: it’s not hard to show that these are the only four congruence classes of
solutions, because 7 and 11 are prime.

3d. Hey, wait a minute — since u2 − 1 = (u − 1)(u + 1), shouldn’t u = 1 and u = −1 be
the only solutions to the congruence in part (c)? Explain.

Answer: The relationship between factors and roots (of a polynomial) still partially holds
in Zn: if P (X) = (X − a)(X − b) . . . then a, b, . . . are all roots of P . But they need not
be the only ones: u is a root iff P (u) ≡ 0, i.e. iff (u − a)(u − b) . . . ≡ 0. But unlike the
real or complex numbers, the integers-modulo-n have zero-divisors: it is possible for a
product like (u − a)(u − b) . . . to be zero even when none of the factors is, for example
14 · 33 ≡ 0 (mod 77) even though neither 14 nor 33 is zero.

4a. Show that if G is any group and x and y are any two elements of G, then the group
element z = y−1xy has the same order as x.

Answer:
Note first that z2 = z · z = (y−1xy)(y−1xy) = y−1x(yy−1)xy = y−1xexy = y−1xxy =

y−1x2y and similarly (by induction on n, if you like) we see that for n = 0, 1, 2, . . . we have
zn = y−1xny.

Now observe that if n = o(x) then xn = e and so zn = y−1ey = e.
Thus the order of x becomes an upper bound on the order of its conjugate, z.
On the other hand, x = yzy−1 = u−1zu, where u = y−1, which is to say that x is

also a conjugate of z, and thus by the previous paragraphs we see the order of z is also an
upper bound on the order of x. So indeed the two have the same order.

4b. Compute z when G = Sym(6), x = (123)(45) and y = (135)(246).

Answer: Remember, xy is the composite function obtained by first performing y and then
performing x. In our case this means 1 → 3 → 1, 2 → 4 → 5, 3 → 5 → 4, 4 → 6 → 6,
5→ 1→ 2, and 6→ 2→ 3, i.e. xy = (1)(25)(346). On the other hand y−1 = (642)(531),
and when we apply this after xy we get the function y−1 ◦ xy = (156)(23)(4).

Just as a check you might observe that this has the same order as x itself, as required
by part (a). In fact it is true in the symmetric groups that x and z will not only have the
same order but the same cycle structure. as this example illustrates.

5. In any group G we define the center of G to be

Z(G) = {g ∈ G| gh = hg for allh ∈ G}

Show that Z(G) is a subgroup of G. (Don’t forget to verify that Z(G) is nonempty!)



Answer: Z(G) is not empty because it contains e : eh = he ( = h).
To see Z(G) is closed under the binary operation, suppose g1 and g2 are two elements

in Z(G); is g3 = g1g2 in there, too? Well, we would have to check whether hg3 = g3h
for all h ∈ G. But indeed hg3 = h(g1g2) = (hg1)g2 = (g1h)g2 = g1(hg2) = g1(g2h) =
(g1g2)h = g3h, as desired. (Make sure you understand why each of those “=” statements
is true!)

Similarly we must check that Z(G) is closed under inversion. But if hg = gh, multiply
both sides of this equation (on the left) by g−1 to get g−1hg = g−1gh = h . Then multiply
both sides on the right by g−1 to get g−1h = g−1hgg−1 = hg−1 . So g−1 also passes the
membership to get in to Z(G).


