1. The perfect squares are the numbers in the familiar sequence $1,4,9,16, \ldots$ Show that the sum of the first n perfect squares is $\frac{n(n+1)(2 n+1)}{6}$.
Answer: Let $S(n)=1+4+\ldots+n^{2}$ and $T(n)=n(n+1)(2 n+1) / 6$, and let $P(n)$ be the statment " $S(n)=T(n)$ ". (Note that $S(n)$ and $T(n)$ are NUMBERS, while $P(n)$ is a SENTENCE.)
$P(1)$ is true because $S(1)=T(1)=1$.
If $P(k-1)$ is a true statement for some integer k, then $P(k)$ is also true: $S(k)=$ $1+4+\ldots+(k-1)^{2}+k^{2}$ is obviously the same as $S(k-1)+k^{2}$, while $T(k)$ exceeds $T(k-1)$ by $k(k+1)(2 k+1) / 6-(k-1) k(2(k-1)-1) / 6=(k / 6)\left(\left(2 k^{2}+3 k+1\right)-\left(2 k^{2}-3 k+1\right)\right)=k^{2}$ as well. That is, we have $S(k)=S(k-1)+k^{2}=T(k-1)+k^{2}=T(k)$, as desired.

Thus $P(n)$ is a true statement for all natural numbers n, by the Principle of Mathematical Induction.
2. Prove that if a, b, c are integers and $\operatorname{gcd}(a, b)=\operatorname{gcd}(a, c)=1$ then $\operatorname{gcd}(a, b c)=1$.

Answer: Suppose d is a common divisor of a and $b c$. If $d>1$ then d is divisible by some prime p. But then $p \mid b c$ and so by Euclid's lemma, p must divide either b or c. On the other hand, $p \mid d$ and $d \mid a$ means $p \mid a$ too, so p is a common divisor either of a and b, or of a and c. But both those pairs have no common divisor larger than 1, a contradiction. So $d=1$, and thus $\operatorname{gcd}(a, b c)=1$.

Remark: it is cumbersome to say anything useful about $\operatorname{gcd}(a, b c)$ when both $\operatorname{gcd}(a, b)$ and $\operatorname{gcd}(a, c)$ are greater than 1.
3. In this problem, assume that a, b, m, n, x, y are all integers, with $m x+n y=1$.

3a. Show that $\operatorname{gcd}(m, n)=1$ and that $n y \equiv 1(\bmod m)$.
Answer: Any common divisor of m and n would divide both $m x$ and $n y$ and hence their sum, $m x+n y$, which is 1 . So the common divisors can only be ± 1.
$n y$ differs from 1 by $m x$, which is a multiple of m
3b. Show that $u=a n y+b m x$ satisfies both congruences $u \equiv a(\bmod m)$ and $u \equiv$ $b(\bmod n)$.

Answer: Working first modulo m, we have already seen $n y \equiv 1$, so $a n y \equiv a$. On the other hand, $m \equiv 0$, so $b m x \equiv 0$ too. Adding shows $u=(a n y+b m x) \equiv(a+0)=a$. The proof that $u \equiv b(\bmod \mathrm{n})$ is nearly identical.

Note: By Bezout's theorem, given any coprime pair m, n we can always find such an x and y. Thus whenever $\operatorname{gcd}(m, n)=1$, we can always find integers u with $u \equiv a(\bmod \mathrm{~m})$ and $u \equiv b(\bmod \mathrm{n})$, no matter what a and b. This result is called the Chinese Remainder Theorem.

3c. Find four distinct congruence classes $u \in \mathbf{Z}_{77}$ with $u^{2} \equiv 1(\bmod 77)$. (Hint You need u to be congruent to +1 or to -1 modulo 11 , and likewise modulo 7 .)

Answer: Using the hint, we look for integers u which are on the one hand congruent to either +1 or -1 modulo 11 , and which are on the other hand congruent to either +1 or -1 modulo 7 . Obviously +1 and -1 are candidates. To get another, we might want an integer u which is, say, congruent to +1 modulo 11 but congruent to -1 modulo 7. Well $\operatorname{gcd}(7,11)=1$ so we may use the ideas of 3 b : a Bezout equation we can use is $7 \cdot(3)+11 \cdot(-2)=1$, from which we obtain the solution $u=(1)(7)(3)+(-1)(11)(-2)=43$. Similarly $u=-43 \equiv 34$ works.

Remark: it's not hard to show that these are the only four congruence classes of solutions, because 7 and 11 are prime.

3d. Hey, wait a minute - since $u^{2}-1=(u-1)(u+1)$, shouldn't $u=1$ and $u=-1$ be the only solutions to the congruence in part (c)? Explain.

Answer: The relationship between factors and roots (of a polynomial) still partially holds in \mathbf{Z}_{n} : if $P(X)=(X-a)(X-b) \ldots$ then a, b, \ldots are all roots of P. But they need not be the only ones: u is a root iff $P(u) \equiv 0$, i.e. iff $(u-a)(u-b) \ldots \equiv 0$. But unlike the real or complex numbers, the integers-modulo-n have zero-divisors: it is possible for a product like $(u-a)(u-b) \ldots$ to be zero even when none of the factors is, for example $14 \cdot 33 \equiv 0(\bmod 77)$ even though neither 14 nor 33 is zero.

4a. Show that if G is any group and x and y are any two elements of G, then the group element $z=y^{-1} x y$ has the same order as x.

Answer:

Note first that $z^{2}=z \cdot z=\left(y^{-1} x y\right)\left(y^{-1} x y\right)=y^{-1} x\left(y y^{-1}\right) x y=y^{-1} x e x y=y^{-1} x x y=$ $y^{-1} x^{2} y$ and similarly (by induction on n, if you like) we see that for $n=0,1,2, \ldots$ we have $z^{n}=y^{-1} x^{n} y$.

Now observe that if $n=o(x)$ then $x^{n}=e$ and so $z^{n}=y^{-1} e y=e$.
Thus the order of x becomes an upper bound on the order of its conjugate, z.
On the other hand, $x=y z y^{-1}=u^{-1} z u$, where $u=y^{-1}$, which is to say that x is also a conjugate of z, and thus by the previous paragraphs we see the order of z is also an upper bound on the order of x. So indeed the two have the same order.

4b. Compute z when $G=\operatorname{Sym}(6), x=(123)(45)$ and $y=(135)(246)$.
Answer: Remember, $x y$ is the composite function obtained by first performing y and then performing x. In our case this means $1 \rightarrow 3 \rightarrow 1,2 \rightarrow 4 \rightarrow 5,3 \rightarrow 5 \rightarrow 4,4 \rightarrow 6 \rightarrow 6$, $5 \rightarrow 1 \rightarrow 2$, and $6 \rightarrow 2 \rightarrow 3$, i.e. $x y=(1)(25)(346)$. On the other hand $y^{-1}=(642)(531)$, and when we apply this after $x y$ we get the function $y^{-1} \circ x y=(156)(23)(4)$.

Just as a check you might observe that this has the same order as x itself, as required by part (a). In fact it is true in the symmetric groups that x and z will not only have the same order but the same cycle structure. as this example illustrates.
5. In any group G we define the center of G to be

$$
Z(G)=\{g \in G \mid g h=h g \text { for all } h \in G\}
$$

Show that $Z(G)$ is a subgroup of G. (Don't forget to verify that $Z(G)$ is nonempty!)

Answer: $Z(G)$ is not empty because it contains e : $e h=h e(=h)$.
To see $Z(G)$ is closed under the binary operation, suppose g_{1} and g_{2} are two elements in $Z(G)$; is $g_{3}=g_{1} g_{2}$ in there, too? Well, we would have to check whether $h g_{3}=g_{3} h$ for all $h \in G$. But indeed $h g_{3}=h\left(g_{1} g_{2}\right)=\left(h g_{1}\right) g_{2}=\left(g_{1} h\right) g_{2}=g_{1}\left(h g_{2}\right)=g_{1}\left(g_{2} h\right)=$ $\left(g_{1} g_{2}\right) h=g_{3} h$, as desired. (Make sure you understand why each of those " $=$ " statements is true!)

Similarly we must check that $Z(G)$ is closed under inversion. But if $h g=g h$, multiply both sides of this equation (on the left) by g^{-1} to get $g^{-1} h g=g^{-1} g h=h$. Then multiply both sides on the right by g^{-1} to get $g^{-1} h=g^{-1} h g g^{-1}=h g^{-1}$. So g^{-1} also passes the membership to get in to $Z(G)$.

