
Students: You asked for some detailed solutions to the problems from HW6 to study
for the test. I have a few minutes so here you go!

Problem 1g (section 3.3) asked for the solution of

εy′′ + 2y′ + ey = 0, y(0) = y(1) = 0

This example is not amenable to the basic pertubation approach, in which we would try to
find a power series solution which, for ε = 0, reduces to the solution of the corresponding
differential equation. Because: there is no solution when ε = 0! The equation 2y′+ ey = 0
has the general solution y = − log(x/2+C) and if we take C = 1/2 we get the one solution

yr = − log((x + 1)/2)

which is consistent with the boundary condition at the right-hand endpoint x = 1. But it
has the value log(2) at x = 0 and so the original problem has no solution at all when ε = 0.
On the other hand, we can see graphically that something like this will work if ε is tiny
enough: simply follow this curve from x = 1 back almost to x = 0, then head down to the
origin to match the other boundary condition; obviously such a change requires very large
slopes for small x but we can reasonably expect those to be balanced by the even-larger
curvature required.

So this is the “boundary layer”: for x close to 0 we expect y between 0 and log(2),
so ey is between 1 and 2, which will be negligible compared to the other two terms, which
we just decided graphically should be very large. To make this fuzzy thinking precise, we
rescale x, turning the smallest x into moderately-sized values of x̄ = x/ε. (That’s a little
bit of a guess; sometimes we find that setting x̄ equal to say x/

√
ε or x/ε2 works better in

the next step).
So let’s see how the ODE looks, expressed in terms of this variable. There’s no

reference to x itself in the original equation, but now we will not speak of y′ = dy/dx but
rather of ẏ = dy/dx̄ = (dy/dx)ε. The equation relatinng these terms is

ε
ÿ

ε2
+ 2

ẏ

ε
+ ey = 0

This captures the idea of the previous paragraph: y′ and y′′ are huge but will have to
nearly cancel because ey is not huge. Clearing denominators we get ÿ + 2ẏ + εey = 0 (and
y = 0 at both x̄ = 0 and x̄ = 1/ε).

This time we can obtain solutions by regular pertubation: when ε = 0 we have the
first integral ẏ = Ae−2x̄ and so the general solution vanishing at x̄ = 0 is y0 = B(1− e−2x̄)
for any constant B. There really isn’t a second boundary condition to satisfy because there
really isn’t a second boundary! (You might hope that y should die off to zero as x̄ → ∞,
but that’s not possible for any B.) If we wish, we could extend this family of solutions to
include nonzero values of ε, adding y1ε + y2ε

2 + . . .. But I won’t pursue this because it
involves evaluating some nasty integrals, and introduces an unknown constant for each of
y1, y2, etc. (Stated another way, our unknown “constant of integration”, the part of the
general solution not pinned down because we lack a second boundary condition or second
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initial condition, is not really a number now but rather a function of ε, i.e. an infinite list
of numbers, those being the coefficients of the Taylor series of this function of ε.)

In any event, we now have a family of functions which suggest the behaviour of y near
x = 0, at least for small ε: we expect

y = y`(x) = B(1− e−2x/ε)

Now, which value of B is appropriate? We know that for small ε we already expect
y ≈ log(2) for small x, so we should choose B so that y` is about this large for some
combinations of small x and small ε. We might for example take B = log(2)/(1− e−2) so
that the graphs of y` and yr roughly glue together at x = ε to give a continuous function.

If you had read the book before tackling the assignment, you found an alternative
perspective: you can remove yourself from the analysis, along with your idiosyncratic
choice of where to end the “boundary later”. That’s good but the recipe they give (for the
“unform” approximation, also called the “method of matched expansions”) has the effect
that it doesn’t quite satisfy the differential equation nor the boundary condition! But
it will give good agreement with both partial solutions on the region where both should
be valid. They do this by adding the solutions y` and yr, and subtract the value on the
overlapping region, with the B chosen so that the functions agree at ”opposite ends”: we
want

L = lim
x→0

yr(x) = lim
x̄→∞

y`(x̄)

This requires B = log(2), and then we let y(x) = y`(x) + yr(x)− L, i.e.

y(x) = − log((x + 1)/2) + log(2)(1− e−2x/ε)− log(2) = − log((x + 1)/2)− log(2)e−2x/ε

You may wish to compare this asymptotic solution to the solutions obtained nu-
merically with your favorite software, for example when ε = 0.1. You will see that the
approximation we have created is always a little low — and in particular takes the wrong
value at the right-hand endpoint — but the error is never more than about 0.02, and is
worst near the middle. But overall, this approximation captures the general shape of the
numerically-correct solution: it starts at y = 0, rises to a peak of about y = 0.54 near
x = 0.14 (which is to say as we pass through the boundary layer), and then descends to
near y = 0 at the right endpoint.

Problem 7 is a little unusual because the right-hand boundary is infinitely far away.
From the perspective of complex analysis, this is not really a different situation (“∞”
is just another point on the Riemann Sphere!) and anyway you can make ∞ look like
just another real number by performing a change of variables like x′ = 1/(1 + x), say,
transforming our domain to the interval (0, 1). But it’s not really a problem to treat this
ODE as is:

εy′′ + exy′ = 1, y(0) = 1, y(∞) = 0.

When ε = 0 the general solution is y(x) = C − e−x and if C = 0 this function satisfies
the right-hand boundary conditions. It’s obviously inapplicable at the left edge because
this function is negative everywhere! You can improve the situation a bit if you like,
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using pertubation analysis: the solution of the original ODE which meets the right-hand
boundary condition is yr(x) = −e−x − ε

2e
−2x + . . .∗

On the other end we can look for transient behaviour on a boundary layer. The scaling
x̄ = x/ε renders the ODE as

ÿ + eεx̄ẏ = ε, y(x̄ = 0) = 1

This can be solved at ε = 0, too; clearly we first get ẏ = Ae−x̄ and then y = 1+A(1−e−x̄)
on account of the initial condition.

Now we choose the A to accomplish matching between the solutions that work near
the two ends. The right-hand solution y = −e−x tends, as we approach the left-hand
region, to y = −1; the left-hand solution y = 1 + A(1 − e−x/ε) tends to 1 + A quickly as
we approach the right-hand region. If we take A = −2 then these two solutions will be
approximately equal away from the two endpoints, and near either endpoint one function
stays nearly constant while the other exhibits its own behaviour. So we can capture the
intermediate values and both end-point behaviours with the function

y = y` + yr − L =
(

1− 2(1− e−x/ε)
)

+
(
−e−x

)
− (−1) = 2e−x/ε − e−x

One reason I have not emphasized the “uniform approximation” is that in general
it does not provide a function meeting the boundary-value conditions. If we have found
solutions y` and yr that provide approximate solutions to an ODE near the endpoints of
an interval [a, b], we would like it if

lim
x→b−

y`(x) = lim
x→a+

yr(x) = L,

say, for then the final proposed solution y(x) = y`(x)+yr(x)−L will approach y`(a) on the
left and yr(b) on the right; if we’ve already made those two functions match one boundary
condition each, then y(x) itself will match both of them. If y` is nearly constant near
x = b then y will have the same behaviour as yr there (increasing or decreasing, concave
or convex, oscillatory, etc.) Likewise if yr is nearly constant near x = a. So the idea of
choosing parameters so that the appropriate limits match (i.e. are equal to a single number
L) is a sound one when it’s the behaviour near the endpoints that’s tricky.

Unfortunately that gets a little complicated in some cases like e.g. Problem 1g here:
the left solution y` was presented as a function of x̄ = x/ε and so rather than taking
limx̄→1/ε, we took limx̄→∞ since, after all, our function y` was chosen to satisfy the ODE
only when ε = 0. The whole business is a little tricky to put onto a solid foundation: one
must make assumptions not only about y staying nearly constant but also about y′ and
y′′ since, obviously, they are involved in the ODE; and the quality of the approximation

∗ Actually, the whole series is −
∑

εn−1(n−1)!e−nx/n, a series which is not convergent
for any x! One must not assume that adding additional terms necessarily improves the
approximation for any particular x.

3



depends on both x and ε, and it’s not immediately clear what “small” means and so on.
This is not a course in which we are trying to give solid proofs of the robustness of such
techniques. Rather, the idea is “try it and see what happens”: of the multiple matching
techniques available to you, pick one and see whether the results seem appropriate to the
application. If not, either try incremental adjustments (e.g. adding terms of a Taylor series
in ε) or try switching to a different method altogether (e.g. making a piece-wise smooth
function from y` and yr rather than making the uniform approximation from their sum.)
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