
I asked you to solve the differential equation

y′′ + y = εy(y′)2

Of course I intended for you to think of this as a pertubation of the simpler ODE y′′+y = 0
which turns out to require re-scaling time (τ = ωt) as well. But it’s also interesting to
compare this answer to the answers that can be obtained other ways. Allow me to show
you what kinds of tools you already have to analyze a differential equation!

This is an autonomous second-order equation so we can view the problem for any
fixed ε as a differential system

y′ = v v′ = −y + εyv2

I invite you to sketch out the orbits in the y− v plane to get a qualititative understanding
of the motion on a line (y=position, v=velocity). If ε > 0 there are orbits with v constant
(at v = ±1/

√
ε); outside them the trajectories look vaguely parabolic. Between the two

lines the orbits are closed loops circulating around the origin (which is also an orbit of its
own). We can interpret these trajectories physically: the origin is the solution to the ODE
corresponding to an unmoving “oscillator” (y(t) = 0 for all times t) and the solutions with
constant v correspond to simple linear motion (y(t) = mt+ b where the speed |m| must be
exactly 1/

√
ε). The distant trajectories are motion along a line that involve racing at high

speed towards the origin y = 0, slowing down a little, and then accelerating away from the
origin. It is the orbits nearer to the origin in R2 that correspond to interesting oscillatory
behaviour. These are precisely the orbits that include a moment at which the object is
briefly at rest (v = 0); as you might expect, starting further from the origin involves a
larger oscillation, eventually achieving a higher speed |v| (the maximum speed occurs as
the object passes the origin y = 0, but if ε > 0 that speed is never larger than 1/

√
ε).

As it turns out, we can more or less solve this ODE in closed form as well. To do
this, we first describe those trajectories (above) algebraically. The differential system is
autonomous, so we may simply divide one equation by the other and use the chain rule to
conclude

dy

dv
=

−v
y(1− εv2)

a separable differential equation whose general solution is log(|1−εv2|) = εy2 +C i.e. each
of the curves in the previous picture is the solution set to

1− εv2 = Keεy
2

for some constant K; when the motion is oscillatory, there is a point (y, v) = (y0, 0) on the
curve, in terms of which we may express K and then solve for velocity v:

v = ±

√
1− eε(y2−y2

0)

ε
.
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In general this forces |v| to be just a bit less than 1/
√
ε except when y is very near the

edges of the loop (y ≈ ±y0).
Of course v is the velocity dy

dt of the motion, so we can view this explicit form of v
as a differential equation to be solved for y = y(t), subject to the initial condition that
y(0) = y0 (where I have defined the moment t = 0 to be the time when the particle has
reached its greatest displacement along the line and hence its instantaneous velocity is
zero).

Well! This ODE is also separable; in fact we can compute what time it is (t) from our
position y:

t =

∫ u=y0

u=y

√
ε

1− eε(u2−y2
0)
du

In particular, we can compute the length of time needed for one period of the oscillation;
that’s four times the length of time needed to travel from y = y0 to y = 0, so we finally
conclude with the precise formula for the period in our problem:

Period = 4

∫ u=1

u=0

√
ε

1− eε(u2−1) du

This integral looks horrible, of course, but it can be evaluated numerically for any
particular ε. Alternatively, we can look to see how it depends on ε. Write the integrand
as

1√
1− u2

(
X

eX − 1

)1/2

where X = −ε(1− u2)

and then expand that function ofX in a Taylor Series, say
∑

k≥0 αkX
k. Then the integrand

is
∑

k≥0 αk(−1)k(1− u2)k−
1
2 εk which we can integrate term-by-term using

∫ 1

0

(1− u2)k−1/2 du =
π

2

(
2k
k

)
1

4k
(k = 0, 1, 2, . . .)

and so we obtain a formula for the period of the oscillation:

Period = 2π
∑
k≥0

αk(−1)k
(

2k
k

)
1

4k
εk

I cheated and used a bit of computer-algebra help to find the expansion ∗

(
X

eX − 1

)1/2

= 1− 1

4
X +

1

96
X2 +

1

384
X3 − 1

10240
X4 + . . .

∗ It’s an intriguing power series: the terms αk seem to alternate in sign but it’s two
positives followed by two negatives. Also the numbers 4k(k + 1)!αk are nearly integral,
although I don’t recognize the numerators.
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to which we then apply the formula above for the definite integrals to conclude

Period = 2π

(
1 +

1

8
ε+

1

256
ε2 − 5

6144
ε3 − 7

262144
ε4 + . . .

)
or, to tie back to the substitution you used yourself,

Period = 2π/ω where ω =

(
1− 1

8
ε+

3

256
ε2 − 1

6144
ε3 − 79

786432
ε4 + . . .

)
By the way, the integral giving the period is valid for any ε, including large ones. As ε

grows large, the two lines in the phase diagram we discussed earlier come closer together,
making our starting position (y0, v0) = (1, 0) feel “far” from the origin, so the orbit will
spend most of its time near the straight lines, meaning the speed will stay nearly constant,
almost equal to the maximum value of 1/

√
ε. This will mean that the time needed to

complete the orbit should be nearly proportional to
√
ε. This is borne out numerically; for

example when ε = 1000, the period is about 20.14564250; when ε = 100, 000 the period is
about 201.3168484. (As ε → −∞, the period decreases to zero, roughly proportional to
1/
√
|ε|.)

In any event once we know the period of the oscillation, we can rescale time by letting
τ = ωt with ω as above, so that y can be viewed as a function of τ that repeats precisely
when τ runs over an interval of length 2π. Using dots to indicate derivatives with respect
to τ , our differential equation may then be written

ÿ + µy = εy(ẏ)2 where µ = 1/ω2 = 1 +
1

4
ε+

3

128
ε2 − 1

1536
ε3 − 95

393216
ε4 − . . .

You may now express y as a pertubation series y = y0 +y1ε+y2ε
2 . . . and solve for each yi

in turn; no “secular terms” should arise because we have already scaled time appropriately.

Alternatively, you may use the fact that y is periodic and as a function of τ has period
2π to express y as a Fourier series, y(τ) =

∑
(an sin(nτ) + bn cos(nτ)) for some constants

an and bn (which will depend on ε). You have already seen how the lowest-order (in ε)
parts of the solution work: our an will all be zero and the coefficients bn will be power
series in ε which start with increasingly large powers of ε. I worked out the first few terms
this way:

y(t) = cos(τ) (1 −1/32ε +5/3072ε2 +9/32768ε3 −913/23592960ε4 + . . .)
+ cos(3τ) ( 1/32ε −1/256ε2 −1/16384ε3 +75/1048576ε4 + . . .)
+ cos(5τ) ( 7/3072ε2 −31/73728ε3 −19/4718592ε4 + . . .)
+ cos(7τ) ( 61/294912ε3 −13/262144ε4 + . . .)
+ cos(9τ) ( 109/5242880ε4 + . . .)

Read in rows to see how each cos(nτ) component varies with ε; read in columns to get the
Fourier expansion of each yi(τ). For small ε there are only a couple of cosines that are
significant but for say ε = 10 the Fourier expansion is something like

y(t) = .860 cos(τ) + .089 cos(3τ) + .028 cos(5τ) + .012 cos(7τ) + .005 cos(9τ) + .003 cos(11τ)
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whose graph is more of a zig-zag (reflecting the behaviour seen in the phase-diagram: the
oscillator spends most of its time traveling with speed near 1/

√
ε).

See? A simple differential equation like

y′′ + y = εy(y′)2

can convey a lot of meaning that we have the tools to discover!
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