Math 408D (Rusin) - FINAL EXAM - May 17 2011. Here are some answers.

1. Calculate $\lim _{x \rightarrow \infty} 4 x\left(e^{1 / x}-1\right)$

Answer: This is an indeterminate form of the " $\infty \cdot 0$ " type. Write the function instead in the form $\frac{4\left(e^{1 / x}-1\right)}{1 / x}$ and apply L'Hopital's Rule: the limit is the same as that of

$$
\frac{4\left(e^{1 / x}\right)\left(-1 / x^{2}\right)}{-1 / x^{2}}=4 e^{1 / x} \longrightarrow 4
$$

2. For what positive numbers a does this improper integral converge? Explain.

$$
\int_{a}^{\infty} \frac{4}{(x-3)^{2}} d x
$$

Answer: The integral is (potentially) improper in both senses: on (say) the interval $[10, \infty$) the function is continuous but the region of integration is unbounded so the integral over this interval is defined to be

$$
\lim _{T \rightarrow \infty} \int_{10}^{T} \frac{4}{(x-3)^{2}} d x
$$

which can be easily evaluated by a u-substitution: if $u=x-3$, the antiderivative is $-4 / u$ and so the integral is $-(4 /(T-3))+(4 / 7)$, which approaches $4 / 7$ as $T \rightarrow \infty$.

Separately, on the interval $[a, 10]$ we have a bounded interval but an integrand $f(x)$ which is not continuous on $[a, 10]$ if $a \leq 3$. So the integral over this interval is, for such a, defined as

$$
\lim _{L \rightarrow 3^{-}} \int_{a}^{L} f(x) d x+\lim _{R \rightarrow 3^{+}} \int_{R}^{10} f(x) d x
$$

assuming both those limits exist. As above, the antiderivative is $-4 /(x-3)$ so we need to assess the limits

$$
\lim _{L \rightarrow 3^{-}} \frac{-4}{L-3}-\frac{-4}{a-3} \quad \text { and } \quad \lim _{R \rightarrow 3^{+}} \frac{-4}{10-3}-\frac{-4}{R-3}
$$

But neither of these limits exists (they both diverge to $+\infty$) so the integral does not converge for any $a \leq 3$.
3. Let $\left\{a_{n}\right\}$ be the sequence whose nth term is $a_{n}=\sqrt{\left(n^{2}+6 n\right)}-n$. Determine whether this sequence converges, and if so, to what.
Answer: You can turn this into a L'Hopital's Rule problem of the " $\infty-\infty$ " type and then into the " $\infty \cdot 0$ " type, but I think it's faster to rewrite a_{n} as

$$
\frac{\left(n^{2}+6 n\right)-(n)^{2}}{\sqrt{\left(n^{2}+6 n\right)}+n}
$$

and then view this as a " ∞ / ∞ " kind of problem. Applying L'Hopital's Rule we get the same limit as that of $6 /\left(\frac{n+3}{\sqrt{n^{2}+6 n}}+1\right)$. That fraction in the denominator is the square root of $\left(n^{2}+6 n+9\right) /\left(n^{2}+6 n\right)$ and hence approaches 1 , which means the denominator approaches 2 while the numerator is just 6 , making the fraction tend towards 3 . By L'Hopital's Rule, our original limit is then also equal to 3 .
4. Evaluate $\sum_{n=0}^{\infty} \frac{1+3^{n}}{7^{n}}$

Answer: This is the sum of two geometric series,

$$
\sum_{n=0}^{\infty} \frac{1}{7^{n}}+\sum_{n=0}^{\infty}\left(\frac{3}{7}\right)^{n}
$$

and so the sum is $\frac{1}{1-(1 / 7)}+\frac{1}{1-(3 / 7)}=\frac{35}{12}$.
5. Is this series convergent or divergent? $\sum_{m \geq 0} \frac{1+(-1)^{n}}{n!}$

Answer: It's convergent. You could do a comparison with $\sum_{m \geq 0} \frac{1+(+1)^{n}}{n!}=\sum_{m \geq 0} \frac{2}{n!}$; you can even recognize the series as the sum of two parts, $\sum_{m \geq 0} \frac{1}{n!}+\sum_{m \geq 0} \frac{(-1)^{n}}{n!}=e+e^{-1}$.
6. Find the interval of convergence for the series $\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{2}}(x+1)^{k}$

Answer: If you try, say, the Ratio Test, you find that the series converges absolutely if $\lim _{k \rightarrow \infty} \frac{\left(1 /(k+1)^{2}\right)|x+1|^{k+1}}{\left(1 / k^{2}\right)|x+1|^{k}}<1$ and diverges if this limit is greater than 1 . Since $\lim \frac{k}{k+1}=1$, the limit is less than 1 iff $|x+1|<1$, i.e. iff $x \in(-2,0)$. If $x<-2$ or $x>0$ then the limit is more than 1 , and the series diverges.

If $x=-2$, the series is simply $\sum_{k=1}^{\infty} \frac{1}{k^{2}}$, which is convergent by the integral test. (It's a " p-series", with $p>1$.) If $x=0$, the series is $\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{2}}$, which is strictly alternating and decreasing, hence again convergent by the Alternating Series Test.

So the interval of convergence is exactly $[-2,0]$.
7. Give a power series representation of $f(x)=\frac{2 x}{1-x^{2}}$.

Answer: This $f(x)$ matches the presentation of the sum of a geometric series starting with $2 x$ and having common ratio x^{2}, so $f(x)=2 x+2 x^{3}+2 x^{5}+\ldots$.

You could use Partial Fractions and write this function as $\frac{1}{1-x}-\frac{1}{1+x}$, which we similarly recognize as geometric series: $\sum_{n \geq 0} x^{n}-\sum_{n \geq 0}(-x)^{n}=\sum_{n \geq 0}\left(1-(-1)^{n}\right) x^{n}=$ $\sum_{n \geq 0} 2 x^{2 k+1}=2 x+2 x^{3}+2 x^{5}+\ldots$.

Or you might have recognized f as the derivative of $-\ln \left(1-x^{2}\right)$, so you could write the series for the latter, and then differentiate.

Just don't attempt to use Taylor's Formula ...
8. Find the degree-3 Taylor polynomial T_{3} centered at $x=25$ for the square-root function $f(x)=\sqrt{x}$. Use your polynomial to estimate $\sqrt{26}$.
Answer: The derivatives of $f(x)=x^{1 / 2}$ are $f^{\prime}(x)=(1 / 2) x^{-1 / 2}, f^{\prime \prime}(x)=(-1 / 4) x^{-3 / 2}$, $f^{\prime \prime \prime}(x)=(3 / 8) x^{-5 / 2}$, etc. The values of these functions at 25 are, respectively, $5,1 / 10$, $-1 / 500$, and $3 / 25000$. So the Taylor polynomial we want is

$$
T_{3}(x)=5+(1 / 10)(x-25)+(-1 / 1000)(x-25)^{2}+(1 / 50000)(x-25)^{3} .
$$

When $x=26$ this gives us the estimate
$f(26) \approx T_{3}(26)=5+(1 / 10)+(-1 / 1000)+(1 / 50000)=5+.1-.001+.00002=5.09902$.
The correct value is $\sqrt{26}=5.09901951359278483002822410902 \ldots$ Approximately :-) .
9. The equation (in polar coordinates) $r=\cos ^{2}(\theta)$ defines a curve in the $x y$-plane. Find the equation of the line tangent to the curve at the point on that curve having $\theta=\pi / 4$.
Answer: The point has $r=\cos ^{2}(\pi / 4)=1 / 2$, and so its Cartesian coordinates are $x=$ $r \cos (\theta)=\sqrt{2} / 4$ and $y=\sqrt{2} / 4$. Now we just need the slope of the line, which is (using the Chain Rule to compute $d x$ and $d y$, and then noting that $d r=-2 \cos (\theta) \sin (\theta) d \theta$

$$
\frac{d y}{d x}=\frac{\sin (\theta) d r+r \cos (\theta) d \theta}{\cos (\theta) d r-r \sin (\theta) d \theta}=\frac{-\sin (\theta) 2 \cos (\theta) \sin (\theta)+r \cos (\theta)}{-\cos (\theta) 2 \cos (\theta) \sin (\theta)-r \sin (\theta)}
$$

When $\theta=\pi / 4$ and $r=1 / 2$ this comes out to $1 / 3$, so the line is $(y-\sqrt{2} / 4)=$ $\frac{1}{3}(x-\sqrt{2} / 4)$.
10. Consider the triangle whose vertices are the points $P=(2,1,0), Q=(3,-1,2)$, and $R=(4,-1,-1)$. Find (a) the area of this triangle, and (b) the angle in this triangle at the vertex P.

Answer: Two sides of the triangle form the vectors $P Q=(1,-2,2)$ and $P R=(2,-2,-1)$ respectively. The area of the triangle is half that of the corresponding parallelogram, i.e.
$(1 / 2)\|P Q \times P R\|=(1 / 2)\|6 i+5 k+2 k\|=\sqrt{65} / 2$. The angle at P has a cosine equal to $(P Q \cdot P R) /(\|P Q\| \cdot\|P R\|)=4 /(3 \cdot 3)$, that is, the angle is $\arccos (4 / 9)$.
11. Find the point on the plane $x+2 y-z=2$ that is closest to the origin.

Answer: The distance from a point (x, y, z) to the origin is $\sqrt{x^{2}+y^{2}+z^{2}}$; since on this plane we have $z=x+2 y-2$, our job is to find a pair (x, y) which minimizes the expression $\sqrt{x^{2}+y^{2}+(x+2 y-2)^{2}}$. It's actually sufficient to minimize the square of this expression, $x^{2}+y^{2}+(x+2 y-2)^{2}=2 x^{2}+4 x y+5 y^{2}-4 x-8 y+4$. The minimum occurs when the gradient is zero, i.e. when $4 x+4 y-4=4 x+10 y-8=0$. That gives two linear equations in two unknowns, whose unique solution is $x=1 / 3, y=2 / 3$ (where $z=-1 / 3$). So there is only this one critical point, and it is indeed the location of a (local, hence global) minimum: the Hessian matrix is

$$
\left(\begin{array}{cc}
4 & 4 \\
4 & 10
\end{array}\right)
$$

with determinant $24>0$ and trace $14>0$. So the point $(x, y, z)=(1 / 3,2 / 3,-1 / 3)$ is on the plane and closer to the origin than any other.
12. A certain curve is parameterized by $x=2 t^{2}, y=\cos (\pi t), z=e^{t-1}$. There is a plane which passes through the origin and also is tangent to this curve at the point $(2,-1,1)$. Find the equation of this plane.

Answer: We pass through that point P only when $t=1$. At that moment, the tangent line points in the direction of the velocity vector $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(4 t,-\pi \sin (\pi t), e^{t-1}\right)=(4,0,1)$. So the normal vector is perpendicular to both this vector and to the vector $O P=(2,-1,1)$, which means the normal vector is parallel to their cross product, $(1,-2,-4)$. Therefore the plane is of the form $x-2 y-4 z=d$ for some number d but obviously $d=0$ since the plane passes through the origin.
13. Suppose $w=f(x, y, z)$ where f is a function with partial derivatives given by $f_{x}=$ $y e^{x}+y z^{3}, f_{y}=e^{x}+x z^{3}+z$, and $f_{z}=3 x y z^{2}+y$. Also suppose that x, y, and z are themselves functions of time t, so that w also varies with time. If $x(0)=0, y(0)=1, z(0)=2, x^{\prime}(0)=$ $3, y^{\prime}(0)=4$, and $z^{\prime}(0)=5$, what is $w^{\prime}(0)$?
Answer: $w^{\prime}(0)=\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t}+\frac{\partial w}{\partial z} \frac{d z}{d t}=9 \cdot 3+3 \cdot 4+1 \cdot 5=44$
Incidentally, the function f has to differ by a constant from $y e^{x}+x y z^{3}+y z$.
14. The surfaces $x y^{3} z^{4}=1$ and $x y z=1$ intersect at the point $(-1,-1,1)$. Find the angle between the surfaces at this point. (Hint: that means the angle between the two tangent planes there, which equals the angle between the two planes' normal lines.)

Answer: The gradient to the surface $x y z=1$ is $(y z, x z, x y)$, which means in particular that at the point $(-1,-1,1)$ the vector $(-1,-1,1)$ points perpendicular to the surface. Likewise the gradient to the other surface at (x, y, z) is $\left(y^{3} z^{4}, 3 x y^{2} z^{4}, 4 x y^{3} z^{3}\right)$ and at our
point that vector is $(-1,-3,4)$. The angle between the surfaces is the angle between these vectors, an angle with cosine $8 /(\sqrt{3} \sqrt{26})$, so that our angle is $\arccos (8 / \sqrt{78})$.
15. Minimize $x^{2}+2 y^{2}+2 z^{2}$ subject to the constraint $x+y+z=1$.

Answer: You can do this by eliminating z (say) or use Lagrange Multipliers: the minimum value occurs when $\nabla f=(2 x, 4 y, 4 z)$ is parallel to $\nabla g=(1,1,1)$. That requires $2 x=4 y=$ $4 z$ (as well as $x+y+z=1$) so $(x, y, z)=(1 / 2,1 / 4,1 / 4)$.

In the remaining three problems, evaluate the integral $\iint_{A} f(x, y) d x d y$:
16. $f(x, y)=x^{2}$ and $A=\{(x, y): 1 \leq x \leq 2,3 \leq y \leq 5\}$.

Answer: It will be $(5-3) \int_{1}^{2} x^{2} d x=14 / 3$.
17. $f(x, y)=x^{2}+y$ and $A=\{(x, y): 0 \leq x \leq 2,-x \leq y \leq x\}$.

Answer: This is

$$
\int_{0}^{2} \int_{-x}^{x}\left(x^{2}+y\right) d y d x=\left.\int_{0}^{2}\left(x^{2} y+\frac{y^{2}}{2}\right)\right|_{y=-x} ^{x} d x=\int_{0}^{2} 2 x^{3} d x=8
$$

18. $f(x, y)=x^{2}+y^{2}$ and $A=\left\{(x, y): 0 \leq x \leq 2,-\sqrt{4-x^{2}} \leq y \leq \sqrt{4-x^{2}}\right\}$.

Answer: Use polar coordinates: the integral equals

$$
\int_{0}^{2} \int_{-\pi / 2}^{\pi / 2} r^{2} r d \theta d r=\pi \int_{0}^{2} r^{3} d r=4 \pi
$$

