
When we discuss conditional convergence, we usually note that there is really only
one way — namely, using the alternating series test — that you know of that can prove
that a series converges when it does not converge absolutely. But not all signed series are
strictly alternating! Here is a nice example which I claim converges conditionally, but not
absolutely: ∑

n=1

sin(n)

n

That’s the sine of n radians there, meaning the terms in the series change sign often, but
not by alternating strictly. Also the terms do not decrease monotonically in magnitude.
The first few terms are approximately

0.84147 + 0.45464 + 0.04704− 0.18920− 0.19178− 0.04656 + 0.09385 . . .

Apart from the tests we discussed — the alternating series test and a few (e.g. integral
test, comparison, ratio, etc.) which can only test positive series — the only hope you have
of deciding convergence, in general, is to be able to find a supple formula for the partial
sums. I will do that — sort of — in this example, showing a new idea. This “trick” is
used pretty often, actually, as a way of speeding up convergence of a series, for those times
when you have to know what a convergent series converges to.

Let bn = sin(1) + sin(2) + . . .+ sin(n), that is, the bn are partial sums for a different
series (one without denominators). We’re interested in these because of a little trick: with
this definition of the bn we have b1 = sin(1) and for all other n > 1 we have

sin(n) = bn − bn−1 = −bn−1 + bn

We substitute this into our original series, hoping for a nice “formula” for the partial sums.

And indeed, the nth partial sum of our original series is
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Now, what makes this trick worthwhile is that we have a good handle on the bn’s:
using some trigonometric identities, one may show by induction on n that
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I leave it to you to show that this expression is never more than about 2 nor less than
about −0.2 (hint: substitute x for n and use Calc-I stuff, or at least look at the graph on
your calculator).

This is very useful information. It assures us that as n→∞ we will have bn
n → 0, so

the limit of our partial sums is the same as the limit of the rest of the expression above:
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But what does it mean to “take the limit of Tn”? This Tn is precisely the nth partial sum
of a new series,
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so the convergence of our original series means exactly the same as the convergence of this
new series; they even have the very same sum. And I have here written the new series in
terms of two other series, the first of which is easily seen to converge to 1. (It’s actually
the telescoping series

∑
( 1
n −

1
n+1 ) = 1!) .)

So does all this do us any good? I mean, can we tell whether this new series converges?
After all, this new one has cosines instead of sines but looks, if anything, worse than the
series we started with! But it is better! The key point is that the denominators are roughly
as big as n2 now, rather than n, and as you know a p-series with p = 1 behaves very
differently from a p-series with p = 2, giving us something useful to use the Comparison

Test on. This new series even converges absolutely, since the nth term is less than 1
(n+1)n ,

and the series
∑

1
n(n+1) converges, as noted above. So in fact every series we have written

down is now seen to converge, including the one we started with. So we have accomplished
half our original goal.

Now, I said at the outset that I wanted to show you how you could prove convergence
for a series that only converged conditionally , so I should show you that this series does
not converge absolutely. In other words, I want to show you that the (positive) series

∑∣∣∣∣ sin(n)

n

∣∣∣∣
diverges (to infinity). It’s easy to understand why this must be true; it’s a little harder
to get all the details right. In spirit, all you need to do is to point to every (roughly) 6th
term and you will see they’re all pretty large — large enough that their sum explodes.

More precisely, consider the sequence consisting of the integers closest to (2k + 1
2 )π:

the integers 2, 8, 14, 20, 27, 33, 39, 46, 52, 58, 64, . . .. Any two consecutive integers differ by
1 (duh!) so when I refer to “the integer closest to x”, that’s a number which is between

x − 1
2 and x + 1

2 . So the kth term in this sequence is no more than (2k + 1
2 )π + 1

2 =
(2π)k + (π + 1)/2 < (2π)(k + 1).



On the other hand these integers are chosen to be near the places where the sine
function equals 1. Just past the peak, the sine function is decreasing (duh), so n <
(2k + 1

2 )π + 1
2 implies sin(n) > sin((2k + 1

2 )π + 1
2 ) = cos( 1

2 ). Almost identical reasoning
proves the same inequality when n is just to the left of the peak.

So the sum of the 2nd, 8th , 14th , ... terms of the sequence is more than

∑
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cos( 1
2 )
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which is a constant multiple of the harmonic series, and hence divergent. The sum of ALL

the terms of
∑∣∣∣ sin(n)n

∣∣∣ is obviously going to be even larger, so that one diverges too.

Thus the original series does NOT “converge absolutely”. Since it DOES converge,
we say it “converges conditionally”.

You may object that I used a “trick” to prove the original series converges. Any
trick that we use more than once in our mathematical lives we call a “tool” :-) . This
one is called “Summation By Parts”. It’s akin to Integration By Parts. Remember what
that procedure lets you do for integrals: if your integrand is a product of two functions,
one easy to differentiate and another easy to antidifferentiate, then you can re-express
your original integral in terms of another integral; the new integrand is the product of
the derivative of the first function and the antiderivative of the second. Well, replace
“function” by “sequence”, “derivative” by “sequence of successive differences an − an−1”,
and “antiderivative” by “sequence of partial sums”,∗ and you’ll see that the transformation
I performed, taking me from the original sequence to the new one, is just an Integration-
By-Parts look-alike. You can apply this trick over and over and get other sums of the
form ∑

n≥0

sin(n)

n(n+ 1) . . . (n+ k)

for larger and larger k; these converge really quickly when k is large.
And using this tool, we can estimate the numerical value of the infinite sum: if you

add up the first N terms of the new series by hand, that is, if you calculate the Nth partial
sum TN , you will have a good estimate for the sum of the whole infinite series. Indeed,
all the terms you left out add up to less than

∑
n>N

2
N(N+1) , which we can estimate (by

several of the tests) to be less than 2/N . So you can for example add the first 100 terms
by hand and know that the real sum differs from this by no more than 2/100 = 0.02.

If you combine the last two paragraphs you get a fast way to sum the original series,
applying Summation By Parts multiple times and then computing partial sums by hand.
It’s not too hard to deduce that the sum of this infinite series must be approximately
1.0707963 (with all of those digits correct).

∗ You should note that these replacements for the operations of differentiation and
anti-differentiation really are inverses of each other!



So we have analyzed a particular series, which is neither positive nor alternating: we
have concluded it converges (but not absolutely), and we have estimated the sum. In fact,
it can be shown that this series converges to

π − 1

2

Formally this is easy to derive: use the fact that ln(1− u) = −
∑
un/n with u = eix and

u = e−ix; subtract the two resulting expressions (using DeMoivre’s Formula) and divide by

2i to get a closed-form expression that equals
∑ sin(nx)

n , but which on the other hand works
out to π−x

2 . But making sense of these manipulations is tricky because the logarithm is not
well defined for complex numbers, and moreover these series only converge appropriately
when x has a non-zero imaginary part. Indeed, the results we obtained this way are only
valid if x < 2π; certainly the sum should not change its value when x is increased by a
multiple of 2π! Nonetheless, they point towards a method that can be used, and they
propose a sum which agrees with what we can compute numerically.

If you pursue more math courses as far as Fourier Analysis, you will eventually see
other kinds of series besides the ones we discuss in class. Just as we have used Taylor
series

∑
anx

n to “describe” “any” function (near x = 0), one may use Fourier series∑
an sin(nx) + bn cos(nx) to “describe” “any” periodic function. The function f which is

defined to be f(x) = (π − x)/2 when 0 < x < 2π and periodic outside that interval (i.e.
f(x+ 2π) = f(x) for all x) — a function with a “sawtooth” graph — has a Fourier series
with each an = 1/n and each bn = 0. This observation allows us to evaluate the series∑ sin(nx)

n , and more importantly points to the significance of signed series in general.


