1. Find the 10th derivative of \(\frac{6}{x^3 + x^2 - 2x} \)

ANSWER Try using the technique of Partial Fractions to write this function as a sum of simple parts. The function turns out to equal
\[
\frac{2}{x - 1} + \frac{1}{x + 2} - \frac{3}{x}
\]
from which we see that the \(n \)th derivative is
\[
(-1)^n \cdot n! \cdot \left(2 \cdot (x - 1)^{-(n-1)} + (x + 2)^{-(n-1)} - 3 \cdot (x + 2)^{-(n-1)} \right)
\]

2. Sasha Student has prepared poorly for the Calculus test and thinks that for all differentiable functions \(f \) and \(g \) it is true that
\[
\frac{d}{dx} (f(x)g(x)) = f'(x)g'(x)
\]

Amazingly, Sasha used this false result on a particular such product and nonetheless obtained the correct derivative of \(f(x)g(x) \) ! Find a pair \(\{f(x), g(x)\} \) of non-constant functions for which this is possible. (A few extra points will be awarded for finding additional, substantially different, such pairs.)

ANSWER We are looking for two functions \(f(x) \) and \(g(x) \) for which
\[
f(x)g'(x) + f'(x)g(x) = f'(x)g'(x)
\]

Divide both sides by \(f'(x)g'(x) \) to see that we require
\[
\frac{f(x)}{f'(x)} + \frac{g(x)}{g'(x)} = 1.
\]
The easiest way to accomplish this is to have each of the summands equal \(1/2 \), which requires \(f'(x) = 2f(x) \) and \(g'(x) = 2g(x) \). This occurs if (and only if) each of the two functions is a multiple of \(e^{2x} \).

Many other solutions are possible: we can have
\[
\frac{f(x)}{f'(x)} = \left(\frac{1}{2} \right) (1 + h(x)), \quad \frac{g(x)}{g'(x)} = \left(\frac{1}{2} \right) (1 - h(x))
\]
for any function h. You may recognize the expression $f'(x)/f(x)$ from “logarithmic differentiation”: it’s the derivative of $F(x) = \ln(|f(x)|)$. So we need to compute functions F and G which satisfy $F'(x) = 2/(1 + h(x))$ and $G'(x) = 2/(1 - h(x))$, from which we will obtain our answers:

$$f(x) = e^2 \int dx/(1+h(x)), \quad g(x) = e^2 \int dx/(1-h(x))$$

There are many kinds of solutions you could try. For example, if $h(x) = kx$ for some constant k then the solutions are

$$f(x) = (1 + kx)^{2/k}, \quad g(x) = (1 - kx)^{-2/k}$$

e.g. $\{(1 + 2x), 1/(1 - 2x)\}$. Using Partial Fractions you can compute solutions whenever $h(x)$ is any rational function, e.g. for $h(x) = x^2$ we obtain $\{(1 + x)/(1 - x), e^{2\arctan(x)}\}$.

And you have the skills to handle certain transcendental functions as well, e.g. when $h(x) = \tan(x)$ we obtain the solution $\{e^x(\cos(x) + \sin(x)), e^x/(\cos(x) - \sin(x))\}$. Other solutions noted by students include $\{x, 1/(1 - x)\}$ and $\{e^x(x - 1), e^{x^2/2}\}$.

3. The equation $x = 2y + 3y^2 + 4y^3$ defines y implicitly as a function of x. (That is, the graph of this equation is the graph of some function $y = f(x)$.) Compute the 0th through 3rd terms of the Taylor series of this function at the origin.

ANSWER We can compute the derivatives of y by implicit differentiation: since $\frac{dx}{dy} = 2 + 6y + 12y^2$, we conclude $dy/dx = 1/(2 + 6y + 12y^2)$. Then differentiate using the Chain Rule: $d^2y/dx^2 = -(6 + 24y)/(2 + 6y + 12y^2)^2 \cdot (dy/dx) = -(6 + 24y)/(2 + 6y + 12y^2)^3$ and similarly (albeit with more effort) we can compute

$$\frac{d^3y}{dx^3} = \frac{15(24y^2 + 12y + 1)}{8(6y^2 + 3y + 1)^5}$$

Evaluating all these for $x = 0$ (i.e. for $y = 0$) we find

$$f(0) = 0, \quad f'(0) = \frac{1}{2}, \quad f''(0) = \frac{-3}{4}, \quad f'''(0) = \frac{15}{8}$$

so $y = \frac{1}{2}x - \frac{3}{8}x^2 + \frac{5}{16}x^3 + \ldots$.

It is probably easier to use the method of undetermined coefficients, though: write $y = ax + bx^2 + cx^3 + dx^4 + \ldots$, substitute into the defining equation for y, expand, and collect powers of x. This leads to the equations

$$2a - 1 = 0, \quad 3a^2 + 2b = 0, \quad 4a^3 + 6ab + 2c = 0, \quad 12a^2b + 6ac + 3b^2 + 2d = 0, \quad \ldots$$
which can be solved successively for the unknown coefficients to obtain

\[a = 1/2, \quad b = -3/8, \quad c = 5/16, \quad d = -15/128, \ldots \]

4. For what values of \(x \) does this series converge?

\[
\sum_{n=1}^{\infty} \frac{n^n x^{(n^2)}}{n!} = x + 2x^4 + \frac{9}{2}x^9 + \frac{32}{3}x^{16} + \ldots
\]

ANSWER The Ratio Test as usually presented for power series does not apply because so many coefficients are zero (that is, \(\lim |a_{n+1}/a_n| \) does not exist). But we may still use the Ratio Test for each \(x \), just thinking of this as a series whose \(n \) term is as given. That is, the series converges if \(L < 1 \) where \(L \) is

\[
\lim_{n \to \infty} \left| \frac{(n+1)^{n+1} x^{(n+1)^2}}{(n+1)!} \cdot \frac{n^n x^{(n^2)}}{n!} \right| = \lim_{n \to \infty} \left| \left(1 + \frac{1}{n} \right)^n x^{2n+1} \right| = e \lim_{n \to \infty} \left| x^{2n+1} \right|
\]

If \(|x| < 1 \), the last limit is zero, so \(L = 0 \) and the series converges. If \(|x| > 1 \), then \(L = \infty \) so the series diverges. If \(|x| = 1 \) then the limit is \(L = e > 1 \) so the series diverges again. Thus the series converges for \(x \) in \((-1, 1)\).

5. For what values of \(k \) does \(f(x, y) = \frac{x^k y}{x^6 + y^2} \) have a (finite) limit as \((x, y) \to (0, 0) \)?

ANSWER Since \(ab/(a^2 + b^2) < 1/2 \) for all real \(a, b \), we see that for any \(k > 3 \) we have \(f(x, y) < |x|^{k-3}/2 \to 0 \). For \(k \leq 3 \) we consider the limit along the curves \(y = rx^3 \): \(f(x, y) = rx^{k-3}/(1 + r^2) \) there, which converges to \(\infty \) if \(k < 3 \), and which has different limits for different \(r \) if \(k = 3 \). So the limit exists if and only if \(k > 3 \).

Alternatively, replace \(x \) with a different coordinate \(u = x^3 \); in terms of \(u \) and \(y \) the question asks for the limit of \((u^{k/3} y)/(u^2 + y^2) \) as \((u, y) \to (0, 0) \). This in turn can be addressed by using polar coordinates in the \(u, y \) plane: we need the limit of \(r^{(k/3)-1} \cos(\theta) \sin(\theta) \) as \(r \to 0 \). This limit is zero if \(k > 3 \), and undefined for \(k \leq 3 \).