M346 Second Midterm Exam Solutions, October 23, 2003

1. Find all the eigenvalues of the following matrices. You do NOT need to find the corresponding eigenvectors. [Note: the answers are fairly simple, and can be obtained without a lot of calculation, using the various "tricks of the trade".]
а) $\left(\begin{array}{cccc}3 & 1 & 5 & 17 \\ 1 & 3 & 4 & -10 \\ 0 & 0 & 2 & -1 \\ 0 & 0 & 1 & 2\end{array}\right)$

This matrix is block triangular, so we just need the eigenvalues of the 2×2 blocks $\left(\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right)$ and $\left(\begin{array}{cc}2 & -1 \\ 1 & 2\end{array}\right)$, which are 4 and 2 , and $2+i$ and $2-i$.
b) $\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 0 & 2 \\ 1 & 2 & 3\end{array}\right)$.

The sum of each row is 6 , so one eigenvalue is 6 . The determinant is zero (since the first and third rows are identical), so one eigenvalue is zero. The trace is 4 , so the third eigenvalue must be -2 .
2. The eigenvalues and eigenvectors of the matrix $A=\left(\begin{array}{ccc}0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0\end{array}\right)$ are $\lambda_{1}=-2, \lambda_{2}=1$ and $\lambda_{3}=1$, and corresponding eigenvectors
$\mathbf{b}_{1}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right), \mathbf{b}_{2}=\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)$ and $\mathbf{b}_{3}=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$. (That is, the eigenvalue 1 has multiplicity two, and a basis for the eigenspace E_{1} is $\left\{\mathbf{b}_{2}, \mathbf{b}_{3}\right\}$.)
a) Solve the difference equation $\mathbf{x}(n+1)=A \mathbf{x}(n)$ with initial condition $\mathbf{x}(0)=\left(\begin{array}{l}3 \\ 0 \\ 0\end{array}\right)$ (which equals $\mathbf{b}_{1}+\mathbf{b}_{2}+\mathbf{b}_{3}$, by the way). That is, find $\mathbf{x}(n)$ for every n.

Since $y_{1}(0)=y_{2}(0)=y_{3}(0)=1$ and $y_{k}(n)=\lambda_{k}^{n} y_{k}(0)$, we have $\mathbf{x}(n)=$ $1 \lambda_{1}^{n} \mathbf{b}_{1}+1 \lambda_{2}^{n} \mathbf{b}_{2}+1 \lambda_{3}^{n} \mathbf{b}_{3}=(-2)^{n} \mathbf{b}_{1}+\mathbf{b}_{2}+\mathbf{b}_{3}=\left(\begin{array}{c}(-2)^{n}+2 \\ (-2)^{n}-1 \\ (-2)^{n}-1\end{array}\right)$.
b) With the situation of part (a), identify the stable, unstable, and neutrally stable modes. What are the limiting ratios $x_{1}(n) / x_{2}(n)$ and $x_{1}(n) / x_{3}(n)$
when n is large?
Since $\left|\lambda_{1}\right|>1$ but $\left|\lambda_{2}\right|=\left|\lambda_{3}\right|=1$, the first mode is unstable (and dominant), while the second and third are neutrally stable. For large $n, \mathbf{x}(n)$ points in the direction of \mathbf{b}_{1}, so the limiting ratios are $1 / 1=1$ and $1 / 1=1$. c) Now solve the differential equation $d \mathbf{x} / d t=A \mathbf{x}$ with initial condition $\mathbf{x}(0)=\left(\begin{array}{l}3 \\ 0 \\ 0\end{array}\right)$. That is, find $\mathbf{x}(t)$ for all t.

Since $y_{1}(0)=y_{2}(0)=y_{3}(0)=1$ and $y_{k}(t)=e^{\lambda_{k} t} y_{k}(0)$, we have $\mathbf{x}(t)=$ $e^{-2 t} \mathbf{b}_{1}+e^{t} \mathbf{b}_{2}+e^{t} \mathbf{b}_{3}==\left(\begin{array}{c}e^{-2 t}+2 e^{t} \\ e^{-2 t}-e^{t} \\ e^{-2 t}-e^{t}\end{array}\right)$.
d) With the situation of part (c), identify the stable, unstable, and neutrally stable modes. What are the limiting ratios $x_{1}(t) / x_{2}(t)$ and $x_{1}(t) / x_{3}(t)$ when t is large?
λ_{1} is negative, so the first mode is stable. $\lambda_{2,3}$ are positive, so those modes are unstable. As $t \rightarrow \infty$, the $e^{-2 t}$ terms go to zero, and we are left with a multiple of $\mathbf{b}_{2}+\mathbf{b}_{3}$, so our ratios go to -2 and -2 .
3. Consider the matrix $A=\left(\begin{array}{ll}4 & 5 \\ 5 & 4\end{array}\right)$.
a) Find the eigenvalues and eigenvectors of A.

Eigenvalues $\lambda_{1}=9$ and $\lambda_{2}=-1$, eigenvectors $\mathbf{b}_{1}=(1,1)^{T}$ and $\mathbf{b}_{2}=$ $(1,-1)^{T}$.
b) Write down the general solution to the second-order differential equation $d^{2} \mathbf{x} / d t^{2}=A \mathbf{x}$, with A as above.

The first mode involves hyperbolic trig functions of $\sqrt{\lambda_{1}} t=3 t$, while the second mode involves ordinary trig functions of $\sqrt{-\lambda_{2}} t=t$, so our grand total is:

$$
\mathbf{x}(t)=\left[c_{1} \cosh (3 t)+c_{2} \sinh (3 t)\right]\binom{1}{1}+\left[c_{3} \cos (t)+c_{4} \sin (t)\right]\binom{1}{-1}
$$

c) Find the solution to this equation when $\mathbf{x}(0)=\binom{4}{-2}$ and $\dot{\mathbf{x}}(0)=\binom{11}{1}$.

The constants c_{1}, \ldots, c_{4} are related to the initial conditions by $c_{1}=y_{1}(0)$, $c_{2}=\dot{y}_{1}(0) / 3, c_{3}=y_{2}(0), c_{4}=\dot{y}_{2}(0) / 1 . \quad$ Since $\binom{4}{-2}=\mathbf{b}_{1}+3 \mathbf{b}_{2}$ and
$\binom{11}{1}=6 \mathbf{b}_{1}+5 \mathbf{b}_{2}$, we must have $c_{1}=1, c_{2}=6 / 3=2, c_{3}=3$ and $c_{4}=5 / 1=5$.
4. A 2×2 matrix M has eigenvalues 1 and 8 , and corresponding eigenvectors $\mathbf{b}_{1}=\binom{2}{3}, \mathbf{b}_{2}=\binom{3}{5}$. Consider the basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ for \mathbb{R}^{2}.
a) Find $[M]_{\mathcal{B}}, P_{\mathcal{E} \mathcal{B}}$ and $P_{\mathcal{B E}}$.

A matrix, expressed in the basis of its eigenvectors, is diagonal: $[M]_{\mathcal{B}}=$ $\left(\begin{array}{ll}1 & 0 \\ 0 & 8\end{array}\right)$, while $P=P_{\mathcal{E} \mathcal{B}}=\left(\begin{array}{ll}2 & 3 \\ 3 & 5\end{array}\right)$ and $P_{\mathcal{B E}}=P^{-1}=\left(\begin{array}{cc}5 & -3 \\ -3 & 2\end{array}\right)$.
b) Find M (expressed in the ordinary basis).

$$
M=P D P^{-1}=\left(\begin{array}{ll}
2 & 3 \\
3 & 5
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 8
\end{array}\right)\left(\begin{array}{cc}
5 & -3 \\
-3 & 2
\end{array}\right)=\left(\begin{array}{cc}
-62 & 42 \\
-105 & 71
\end{array}\right)
$$

c) A matrix A has the property that $A^{3}=M$. Find A. [Hint: what are the eigenvalues and eigenvectors of A ?]

The eigenvalues of A are the cube roots of the eigenvalues of M, while the eigenvectors are the same, so $A=\left(\begin{array}{ll}2 & 3 \\ 3 & 5\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)\left(\begin{array}{cc}5 & -3 \\ -3 & 2\end{array}\right)=\left(\begin{array}{cc}-8 & 6 \\ -15 & 11\end{array}\right)$.
5. True of False? Each question is worth 4 points. You do NOT need to justify your answers, and partial credit will NOT be given.
a) The geometric multiplicity of an eigenvalue λ is the dimension of the eigenspace E_{λ}.

True. This is the definition of the geometric multiplicity.
b) If a matrix is diagonalizable, then its eigenvalues are all different.

False. Problem 2 gives a counterexample.
c) Let A by an arbitrary $n \times n$ matrix. The sum of the algebraic multiplicities of the eigenvalues of A must equal n.

True. The sum of the algebraic multiplicities is the degree of the characteristic polynomial, which is n.
d) The eigenvalues of a (square) matrix with real entries are always real.

False. The matrix $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ has eigenvalue i and $-i$.
e) If $B=P A P^{-1}$, then A and B have the same eigenvalues.

True. They have different eigenvectors but the same eigenvalues.

