M346 Final Exam Solutions, December 11, 2004

1. On $\mathbb{R}_{3}[t]$, let L be the linear operator that shifts a function to the left by one. That is $(L \mathbf{p})(t)=\mathbf{p}(t+1)$. Find the matrix of L relative to the standard basis $\left\{1, t, t^{2}, t^{3}\right\}$

Solution: Note that $L\left(\mathbf{b}_{1}\right)=1, L\left(\mathbf{b}_{2}\right)=1+t, L\left(\mathbf{b}_{3}\right)=(1+t)^{2}=1+2 t+1$, $L\left(\mathbf{b}_{4}\right)=(1+t)^{3}=1+3 t+3 t^{2}+t^{3}$. Take the coordinates of these to get the columns of

$$
[L]_{\mathcal{B}}=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

2. a) Find the eigenvalues of the following matrix. You do NOT have to find the eigenvectors.

$$
\left(\begin{array}{llllll}
3 & 2 & 1 & 1 & 2 & 3 \\
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 1 & 1 & 7 & 8 & 9 \\
0 & 0 & 0 & 4 & 0 & 0 \\
0 & 0 & 0 & 3 & 3 & 4 \\
0 & 0 & 0 & 5 & 4 & 3
\end{array}\right)
$$

This matrix is block-triangular, with upper-left block $A=\left(\begin{array}{lll}3 & 2 & 1 \\ 1 & 2 & 3 \\ 1 & 1 & 1\end{array}\right)$ and lower-right block $B=\left(\begin{array}{ccc}4 & 0 & 0 \\ 3 & 3 & 4 \\ 6 & 4 & 3\end{array}\right) . \quad B$ is itself block-triangular, with upper left block $C=4$ and lower right block $D=\left(\begin{array}{ll}3 & 4 \\ 4 & 3\end{array}\right)$. The eigenvalue of C is obviously 4 , and the eigenvalues of D are $3 \pm 4=7,-1$. All that's left is to find the eigenvalues of A.

Since the sum of each column is $5, \lambda_{1}=5$. Since the determinant is zero, one eigenvalue must be zero. Since the trace is 6 , the sum of the eigenvalues is 6 , so the third eigenvalue is 1 . Thus the eigenvalues of A are $(5,0,1)$ and the eigenvalues of our matrix are $(5,0,1,4,-1,7)$.
b) Find the eigenvalues AND eigenvectors of the matrix $\left(\begin{array}{ll}1 & 4 \\ 1 & 0\end{array}\right)$. Eigenvalues $\lambda_{ \pm}=\frac{1 \pm \sqrt{17}}{2}$, eigenvectors $\mathbf{b}_{ \pm}=\binom{\lambda_{ \pm}}{1}$. You can also rescale this to $\binom{1 \pm \sqrt{17}}{2}$ or $\binom{-8}{1 \mp \sqrt{17}}$.

For extra credit, find the eigenvalues AND eigenvectors of the matrix $\left(\begin{array}{cc}1 & -4 \\ 1 & 0\end{array}\right)$.
$\lambda_{ \pm}=\frac{1 \pm i \sqrt{15}}{2}, \mathbf{b}_{ \pm}=\binom{\lambda_{ \pm}}{1}$.
3. A 3×3 matrix A has eigenvalues 2,1 and -1 and corresponding eigenvectors
$\mathbf{b}_{1}=(1,2,3)^{T}, \mathbf{b}_{2}=(1,1,-1)^{T}$ and $\mathbf{b}_{3}=(-5,4,-1)^{T}$.
a) Decompose $(36,1,34)^{T}$ as a linear combination of $\mathbf{b}_{1}, \mathbf{b}_{2}$ and \mathbf{b}_{3}.

Let $\mathbf{x}_{0}=(36,1,34)^{T}$, and write $\mathbf{x}_{0}=a_{1} \mathbf{b}_{1}+a_{2} \mathbf{b}_{2}+a_{3} \mathbf{b}_{3}$. Since the b's are orthogonal, $a_{1}=\left\langle\mathbf{b}_{1} \mid \mathbf{x}\right\rangle /\left\langle\mathbf{b}_{1} \mid \mathbf{b}_{1}\right\rangle=140 / 14=10$. Likewise, $a_{2}=3 / 3=1$ and $a_{3}=-210 / 42=-5$, so $\mathbf{x}_{0}=10 \mathbf{b}_{1}+\mathbf{b}_{2}-5 \mathbf{b}_{3}$. This could also have been obtained by row reduction.
b) If $d \mathbf{x} / d t=A \mathbf{x}$ and $\mathbf{x}(0)=(36,1,34)^{T}$, what is $\mathbf{x}(t)$? [You do NOT need to compute A to do this.]

Since each term goes as $e^{\text {lambdat }}, \mathbf{x}(t)=10 e^{2 t} \mathbf{b}_{1}+e^{t} \mathbf{b}_{2}-5 e^{-t} \mathbf{b}_{3}$.
c) Is A Hermitian? Why or why not? Is A unitary?

Since A is diagonalizable, has real eigenvalues, and has orthogonal eigenvectors, A is Hermitian. Since $\left|\lambda_{1}\right|=2 \neq 1, A$ is not unitary.
4. Let A be a 3×3 matrix with eigenvalues $-9,0$ and 4 , and with eigenvectors $\mathbf{b}_{1}=(1,1,1)^{T}, \mathbf{b}_{2}=(1,2,3)^{T}$, and $\mathbf{b}_{3}=(0,0,1)^{T}$.
a) Decompose $\mathbf{w}=(4,5,5)^{T}$ and $\mathbf{v}=(2,1,4)$ as linear combinations of $\mathbf{b}_{1}, \mathbf{b}_{2}$, and \mathbf{b}_{3}.

By row-reduction, $\mathbf{w}=3 \mathbf{b}_{1}+\mathbf{b}_{2}-\mathbf{b}_{3}$ and $\mathbf{v}=3 \mathbf{b}_{1}-\mathbf{b}_{2}+4 \mathbf{b}_{3}$. Since the vectors are NOT orthogonal, you cannot get these coefficients by taking inner products (at least not easily).
b) Solve the system of differential equations $d^{2} \mathbf{x} / d t^{2}=A \mathbf{x}$ with initial conditions $\mathbf{x}(0)=\mathbf{w}$ and $\left.\frac{d \mathbf{x}}{d t}\right|_{t=0}=\mathbf{v}$.

Since $\lambda_{1}=-9<0$, the \mathbf{b}_{1} terms go as $\cos (3 t)$ and $\sin (3 t)$. Since $\lambda_{2}=0$, the \mathbf{b}_{2} terms go as 1 and t. Since $\lambda_{3}=4>0$, the \mathbf{b}_{3} terms go as $\cosh (2 t)$ and $\sinh (2 t)$. All together,

$$
\mathbf{x}(t)=(3 \cos (3 t)+\sin (3 t)) \mathbf{b}_{1}+(1-t) \mathbf{b}_{2}+(-\cosh (2 t)+2 \sinh (2 t)) \mathbf{b}_{3}
$$

c) Is A Hermitian? Why or why not? Is A unitary?

Neither Hermitian nor unitary, since the eigenvectors are not orthogonal.
5. Linearization. Consider the nonlinear difference equations

$$
\begin{aligned}
& x_{1}(n+1)=\frac{x_{1}(n)^{2}}{2}+\frac{x_{2}(n)^{2}}{2}-\frac{1}{8} \\
& x_{2}(n+1)=x_{1}(n) x_{2}(n)+\frac{1}{2}
\end{aligned}
$$

near the fixed point $\mathbf{a}=(1 / 2,1)^{T}$.
a) Write down a LINEAR system of difference equations that (approximately) describes the evolution of $\mathbf{y}=\mathbf{x}-\mathbf{a}$.

$$
\mathbf{y}(n+1) \approx A \mathbf{y}(n), \text { where } A=\left.\left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{2} & x_{1}
\end{array}\right)\right|_{\mathbf{x}=\mathbf{a}}=\left(\begin{array}{cc}
1 / 2 & 1 \\
1 & 1 / 2
\end{array}\right) . \text { (The first }
$$ row of A is the gradient of $x_{1}^{2} / 2+x_{2}^{2} / 2-1 / 8$, while the second is the gradiant of $x_{1} x_{2}+1 / 2$.)

b) How many stable modes are there? How many unstable? How many neutral?

Since the eigenvalues of A are $3 / 2$ and $-1 / 2$, and $|3 / 2|>1>|-1 / 2|$, there is one unstable mode and one stable mode. The unstable mode has eigenvector $(1,1)^{T}$ while the stable mode has eigenvector $(1,-1)^{T}$.
c) Write down the general solution to the linear difference equations you found in (a).

$$
\mathbf{y}(n)=c_{1}(3 / 2)^{n}\binom{1}{1}+c_{2}(-1 / 2)^{n}\binom{1}{-1}
$$

6. Gram-Schmidt. Convert the following collections of vectors to orthogonal collections using the Gram-Schmidt process. In each case, we are using the usual inner product.
a) In \mathbb{R}^{4}, $\mathbf{x}_{1}=(1,0,1,2)^{T}$, $\mathbf{x}_{2}=(2,1,2,1)^{T}$, $\mathbf{x}_{3}=(6,3,4,1)^{T}$. $\mathbf{y}_{1}=(1,0,1,2)^{T}, \mathbf{y}_{2}=(1,1,1,-1)^{T}, \mathbf{y}_{3}=(1,0,-1,0)^{T}$.
b) In \mathbb{C}^{3}, $\mathbf{x}_{1}=(1+i, 1-i, 2 i)^{T}$, $\mathbf{x}_{2}=(3+3 i, 3-i, 1+3 i)^{T}$.

$$
\mathbf{y}_{1}=\left(\begin{array}{c}
1+i \\
1-i \\
2 i
\end{array}\right), \mathbf{y}_{2}=\mathbf{x}_{2}-2 \mathbf{y}_{1}=\left(\begin{array}{c}
1+i \\
1+i \\
1-i
\end{array}\right)
$$

7. Least squares.
a) Find a least-squares solution to the linear equations

$$
\left(\begin{array}{ccc}
1 & -2 & -1 \\
1 & -1 & 2 \\
1 & 0 & 0 \\
1 & 1 & -2 \\
1 & 2 & 1
\end{array}\right) \mathbf{x}=\left(\begin{array}{l}
3 \\
1 \\
2 \\
7 \\
5
\end{array}\right)
$$

Calling the 5×3 matrix A and the right-hand-side \mathbf{b}, we have $A^{T} A=$ $\left(\begin{array}{ccc}5 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 10\end{array}\right)$ and $A^{T} \mathbf{b}=\left(\begin{array}{c}18 \\ 10 \\ -10\end{array}\right)$. Solving $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$ gives $\mathbf{x}=(18 / 5,1,-1)^{T}$.
b) Find the equation of the best line through the points $(0,1),(1,3),(2,4),(3,5)$, and $(4,4)$.

Setting $y=m x+b$, our data becomes

$$
\left(\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2 \\
1 & 3 \\
1 & 4
\end{array}\right)\binom{b}{m}=\left(\begin{array}{l}
1 \\
3 \\
4 \\
5 \\
4
\end{array}\right)
$$

whose least-squares solution is $b=9 / 5, m=4 / 5$. So the best line is $y=$ $(4 / 5) x+(9 / 5)$.
8. Working on the interval $x \in[0,1]$, let $g_{0}(x)=\left\{\begin{array}{ll}x & \text { if } x<1 / 2 ; \\ 1-x & \text { if } x \geq 1 / 2\end{array}\right.$. In the book, we saw that g_{0} can be expanded in a (sine) Fourier series: $g_{0}(x)=$ $\sum_{n=1}^{\infty} c_{n} \sin (n \pi x)$, where $c_{n}=4 \sin (n \pi / 2) / n^{2} \pi^{2}$.

Compute the solution to the wave equation: $\partial^{2} f / \partial t^{2}=\partial^{2} f / \partial x^{2}$ on the interval $[0,1]$ with Dirichlet boundary conditions and with initial conditions
$f(x, 0)=0, \frac{\partial f}{\partial t}(x, 0)=g_{0}(x)$. You may leave your answer as a Fourier series, but you should compute all the coefficients.

The eigenvalues of $d^{2} / d x^{2}$ are $\lambda_{n}=-n^{2} \pi^{2} / L^{2}=-n^{2} \pi^{2}$, so $\omega_{n}=n \pi$, and

$$
f(x, t)=\sum \frac{c_{n}}{\omega_{n}} \sin (n \pi x) \sin \left(\omega_{n} t\right)=\sum \frac{4 \sin (n \pi / 2)}{n^{3} \pi^{3}} \sin (n \pi x) \sin (n \pi t)
$$

Extra credit: For fixed nonzero t, how smooth is $f(x, t)$ as a function of x ? How many derivatives can you take? At what level do you get jump discontinuities. [I'm looking for an answer like "the first 15 derivatives of f are continuous, but the 16 th derivative has jumps". (But no, that's not the correct answer)]

Since the coefficients go as $n^{-3}, f(x, t)$ has continuous values and first derivatives, but the 2nd derivative w.r.t. x has jumps.
9. True of False? Each question is worth 2 points. You do NOT need to justify your answers, and partial credit will NOT be given.
a) If a matrix A is Hermitian, then e^{A} is diagonalizable.

True. If A is Hermitian then A is diagonalizable, and all of the eigenvectors of A are also eigenvectors of e^{A}.
b) If A is Hermitian, then e^{A} is unitary.

No. It's $e^{i A}$ that's unitary.
c) The eigenvalues of a real orthogonal matrix must be real.

False. The real orthogonal matrix $\left(\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right)$ has complex eigenvalues $e^{ \pm i \theta}$.
d) If $f(x)$ is a periodic function with Fourier coefficients $\hat{f}_{n}=e^{-n^{2}}$, then $f(x)$ is infinitely differentiable.

True, since $e^{-n^{2}}$ decays faster than any power of n.
e) If the columns of a matrix A are orthogonal and nonzero, then the only solution to $A \mathbf{x}=0$ is $\mathbf{x}=0$.

True. (Nonzero) orthogonal vectors are linearly independent.
f) If \mathcal{B}, \mathcal{D} and \mathcal{E} are bases for a vector space, then $P_{\mathcal{B D}} P_{\mathcal{D E}} P_{\mathcal{E B}}=I$.

True.
g) If $L: V \rightarrow W$ is a linear transformation, then the kernel of L is a subspace of W.

False. The kernel is a subspace of V, not of W.
h) If A is a block-triangular matrix, and if each block is diagonalizable, then A is diagonalizable.

False. $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ is a counterexample.
i) The system $\mathbf{x}(n+1)=A \mathbf{x}(n)$ is stable if all the eigenvalues of A have negative real part.

False. The condition for stability is that the eigenvalues have magnitude less than 1.
j) If the determinant of a square matrix is zero, then zero is an eigenvalue.

True.

