M346 First Midterm Exam, September 21, 2000
The exam is closed book, but you may have a single hand-written 8.5×11 crib sheet. There are 4 problems, each worth 25 points. I hope to have the exam returned to you next Thursday.

Good luck!

1. Let V be the subspace of \mathbb{R}_{3} consisting of polynomials \mathbf{p} with $\mathbf{p}(0)=0$. Let $\mathbf{b}_{1}=-t+t^{2}, \mathbf{b}_{2}=t+t^{2}+t^{3}, \mathbf{b}_{3}=-7 t-5 t^{2}+2 t^{3}$. Is the set $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$ linearly independent? Does it span V ? Is it a basis for V ?
2. In $\mathbb{R}_{2}[t]$, let $\mathbf{b}_{1}(t)=1+t+t^{2}, \mathbf{b}_{2}(t)=2+3 t+t^{2}, \mathbf{b}_{3}(t)=1+2 t+t^{2}$, and $\mathbf{v}(t)=5-2 t+3 t^{2}$. Let $\mathcal{E}=\left\{1, t, t^{2}\right\}$ be the standard basis. Find $P_{\mathcal{E B}}, P_{\mathcal{B E}}$, and $[\mathbf{v}]_{\mathcal{B}}$.
3. On $\mathbb{R}_{3}[t]$, let L be the linear operator that shifts a function over to the left by one. That is, $(L \mathbf{p})(t)=\mathbf{p}(t+1)$. Find the matrix of L relative to the standard basis $\left\{1, t, t^{2}, t^{3}\right\}$.
4. In $\mathbb{R}_{2}[t]$, let $\mathbf{b}_{1}(t)=1+t+t^{2}, \mathbf{b}_{2}(t)=2+3 t+t^{2}, \mathbf{b}_{3}(t)=1+2 t+t^{2}$, as in problem 2. Let $L=d / d t$ be the derivative operator. Find the matrix of L relative to the basis \mathcal{B}. [You may find your answers to problem 2 to be useful.]
