M346 Practice Second Exam
Originally given November, 2, 2000

Problem 1: Find all the eigenvalues and corresponding eigenvectors of the matrix

$$
A=\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 2 & 0 \\
0 & -3 & 5
\end{array}\right)
$$

Note that the matrix is block-triangular, with an upper left 1×1 block and a lower right 2×2 block. The eigenvalue of the 1×1 block is 1 , and the eigenvalues of the 2×2 block (which is itself triangular) are 2 and 5 . Thus our eigenvalues are $\lambda_{1}=1, \lambda_{2}=2$, $\lambda_{3}=5$.

Another way to get the eigenvalues is to note that the sum of each row is 2 , that the trace is 8 , and that the determinant is 10 . Or you could compute the characteristic polynomial and find the roots.

You then find the eigenvectors by solving $(A-\lambda I) x=0$ by row reduction. The answers are $\mathbf{b}_{1}=(1,0,0)^{T}, \mathbf{b}_{2}=(1,1,1)^{T}, \mathbf{b}_{2}=(1,0,4)^{T}$.
Problem 2: Find a matrix with eigenvalues 1,2 and 3 and corresponding eigenvectors $\left(\begin{array}{l}0 \\ 2 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)$ and $\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)$,
$A=P D P^{-1}$, where $P=\left(\begin{array}{ccc}0 & 1 & -1 \\ 2 & 1 & 0 \\ 1 & -1 & 1\end{array}\right), D=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right)$. We compute $P^{-1}=$ $\left(\begin{array}{ccc}1 & 0 & 1 \\ -2 & 1 & -2 \\ -3 & 1 & -2\end{array}\right)$ and $A=P D P^{-1}=\left(\begin{array}{ccc}5 & -1 & 2 \\ -2 & 2 & -2 \\ -4 & 1 & -1\end{array}\right)$.
Problem 3: The eigenvalues of the matrix $A=\left(\begin{array}{lll}0 & 3 & 0 \\ 3 & 0 & 4 \\ 0 & 4 & 0\end{array}\right)$ are 5, 0, and -5 .
a) Find the eigenvectors.

By row-reduction, $\mathbf{b}_{1}=\left(\begin{array}{l}3 \\ 5 \\ 4\end{array}\right), \mathbf{b}_{2}=\left(\begin{array}{c}4 \\ 0 \\ -3\end{array}\right), \mathbf{b}_{3}=\left(\begin{array}{c}3 \\ -5 \\ 4\end{array}\right)$.
b) Decompose the vector $(50,0,0)^{T}$ as a linear combination of eigenvectors.

By row-reduction, or by computing P^{-1}, we get $\left(\begin{array}{c}50 \\ 0 \\ 0\end{array}\right)=3 \mathbf{b}_{1}+8 \mathbf{b}_{2}+3 \mathbf{b}_{3}$.
c) Solve the differential equation $d \mathbf{x} / d t=A \mathbf{x}$ with initial condition $\mathbf{x}(0)=(50,0,0)^{T}$.

$$
\mathbf{x}(t)=3 e^{5 t} \mathbf{b}_{1}+8 \mathbf{b}_{2}+3 e^{-5 t} \mathbf{b}_{3}=\left(\begin{array}{c}
9 e^{5 t}+32+9 e^{-5 t} \\
15 e^{5 t}-15 e^{-5 t} \\
12 e^{5 t}-24+12 e^{-5 t}
\end{array}\right)
$$

Problem 4: Consider discrete-time evolution equations

$$
\begin{aligned}
& x_{1}(n)=x_{1}(n-1)+2 x_{2}(n-1) \\
& x_{2}(n)=x_{1}(n-1)+3 x_{2}(n-1) .
\end{aligned}
$$

a) How many stable modes does this system have? How many neutrally stable modes? How many unstable modes?

The matrix is $A=\left(\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right)$, whose eigenvalues are $2 \pm \sqrt{3}$ and eigenvectors are $\mathbf{b}_{1}=\binom{2}{1+\sqrt{3}}\left(\right.$ or $\left.\binom{\sqrt{3}-1}{1}\right)$ and $\mathbf{b}_{2}=\binom{2}{1-\sqrt{3}}\left(\right.$ or $\binom{\sqrt{3}+1}{-1}$). One eigenvalue is bigger than one (unstable), and one is less than one (stable).
b) Write down the general solution to this system of equations.
$\mathbf{x}(n)=c_{1}(2+\sqrt{3})^{n} \mathbf{b}_{1}+c_{2}(2-\sqrt{3})^{n} \mathbf{b}_{2}$, with \mathbf{b}_{1} and \mathbf{b}_{2} as above.
c) Describe qualitatively the behavior of $\mathbf{x}(n)$ for large n (both size and direction), given typical initial conditions.

Typically, both c_{1} and c_{2} will be nonzero, so $c_{1}(2+\sqrt{3})^{n}$ will grow, while $c_{2}(2-\sqrt{3})^{n}$ will go to zero. For n large, the system will point in the \mathbf{b}_{1} direction (that is, the ratio x_{1} / x_{2} will be close to $\left.2 /(1+\sqrt{3})=\sqrt{3}-1\right)$, and the size will multiply by approximately $2+\sqrt{3}$ in each step.
Problem 5: Consider the nonlinear system of differential equations

$$
\begin{aligned}
& \frac{d x_{1}}{d t}=x_{1}\left(3-x_{1}-2 x_{2}\right) \\
& \frac{d x_{2}}{d t}=x_{2}\left(2-x_{1}-x_{2}\right)
\end{aligned}
$$

a) Find the fixed points. [There are four of them]

The points where $d \mathbf{x} / d t=0$ are $(0,0)^{T},(0,2)^{T},(3,0)^{T}$, and $(1,1)^{T}$.
b) For each fixed point, find a linear system of equations that approximates the dynamics near the fixed point.

Taking derivatives of $x_{1}\left(3-x_{1}-2 x_{2}\right)$ and $x_{2}\left(2-x_{1}-x_{2}\right)$ with respect to x_{1} and x_{2} gives the matrix of the linearization, namely $A=\left(\begin{array}{cc}3-2 x_{1}-2 x_{2} & -2 x_{1} \\ -x_{2} & 2-x_{1}-2 x_{2}\end{array}\right)$. At $(0,0)^{T}$ this is $\left(\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right)$, at $(3,0)^{T}$ it is $\left(\begin{array}{cc}-3 & -6 \\ 0 & -1\end{array}\right)$, at $(0,2)^{T}$ it is $\left(\begin{array}{cc}-1 & 0 \\ -2 & -2\end{array}\right)$, and at $(1,1)^{T}$ it is $\left(\begin{array}{ll}-1 & -2 \\ -1 & -1\end{array}\right)$.
c) Which (if any) of the fixed points are stable?

At $(0,0)$, both eigenvalues are positive, so the system is unstable. At $(3,0)^{T}$, both eigenvalues are negative, so the system is stable. At $(0,2)^{T}$, both eigenvalues are negative, so the system is stable. At $(1,1)^{T}$, the eigenvalues are $-1 \pm \sqrt{2}$. One eigenvalue is positive, so the system is unstable.

