1. Let \(V = \mathbb{R}_2[t] \) with (standard) basis \(B = \{1, t, t^2\} \) and let \(W = M_{2,2} \) be the space of 2 by 2 real matrices with (standard) basis \(D = \{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \} \). Consider the linear transformation \(L(p) = \begin{pmatrix} p(1) - p(0) \\ p(2) - p(0) \\ p(-1) - p(0) \\ p(-2) - p(0) \end{pmatrix} \) from \(V \) to \(W \).

 a) Find the matrix of \(L \) relative to the bases \(B \) and \(D \).

 b) What is the dimension of \(\ker(L) \)? Find a basis for \(\ker(L) \).

 c) What is the dimension of \(\text{range}(L) \)? Find a basis for \(\text{range}(L) \).

2. Let \(A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 5 & 7 \\ 5 & 10 & 13 & 18 \end{pmatrix} \).

 a) Let \(V = \{ x \in \mathbb{R}^4 | Ax = 0 \} \). What is the dimension of \(V \)? Find a basis for \(V \).

 b) In \(\mathbb{R}^3 \), consider the vectors \((1, 2, 5)^T, (2, 4, 10)^T, (3, 5, 13)^T \), and \((4, 7, 18)^T \). Are these vectors linearly independent? Do they span \(\mathbb{R}^3 \)?

 c) Find a basis for the span of the four vectors of part (b).

3. Let \(L : \mathbb{R}^2 \to \mathbb{R}^2 \) be given by \(L \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 8x_1 - 10x_2 \\ 3x_1 - 3x_2 \end{pmatrix} \). On \(\mathbb{R}^2 \), consider the standard basis \(\mathcal{E} \) and the alternate basis \(\mathcal{B} = \{ \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 5 \\ 3 \end{pmatrix} \} \). Finally, let \(\mathbf{v} = \begin{pmatrix} 8 \\ 3 \end{pmatrix} \).

 a) Find \(P_{\mathcal{EB}}, P_{\mathcal{BE}}, [\mathbf{v}]_{\mathcal{E}} \) and \([\mathbf{v}]_{\mathcal{B}} \).

 b) Find the matrix \([L]_{\mathcal{E}} \) and the matrix \([L]_{\mathcal{B}} \).

4. The two parts of this problem are NOT connected.

 a) In \(\mathbb{R}_2[t] \), consider the vectors \(\mathbf{b}_1 = 1 + t + 2t^2, \mathbf{b}_2 = 2 + 3t + 5t^2 \) and \(\mathbf{b}_3 = 3 + 7t + 9t^2 \). Do these vectors form a basis for \(\mathbb{R}_2[t] \)? If so, find \([\mathbf{v}]_{\mathcal{B}} \), where \(\mathbf{v} = 1 - 2t \). If not, find constants \(a_1, a_2, a_3 \), not all zero, such that \(a_1 \mathbf{b}_1 + a_2 \mathbf{b}_2 + a_3 \mathbf{b}_3 = 0 \).

 b) In \(\mathbb{R}_3[t] \), let \(V \) be the set of polynomials \(p \) for which \(p(0) = p(1) = 0 \). Find a basis for \(V \).
5. True or False? Each question is worth 4 points. You do NOT need to justify your answers, and partial credit will NOT be given.

a) The plane $x_1 + 3x_2 - 4x_3 = 0$ is a subspace of \mathbb{R}^3.

b) If A is a 3×5 matrix, then the dimension of the null space of A is at least 2.

c) Let $L : \mathbb{R}^5[t] \rightarrow \mathbb{R}^3$ be a linear transformation. If L is onto, then the kernel of L is 2-dimensional.

d) Let $\mathcal{B} = \{b_1, \ldots, b_n\}$ be a basis for a vector space V. If n vectors d_1, \ldots, d_n span V, then the vectors $[d_1]_B, \ldots, [d_n]_B$ are linearly independent.

e) Every linear transformation from \mathbb{R}^5 to \mathbb{R}^4 is multiplication by a 5×4 matrix.