M346 First Midterm Exam, February 11, 2009

1a) In \(\mathbb{R}^3 \), let \(E \) be the standard basis and let \(B = \{(1, 2, 3), (0, 1, 4), (0, 0, 1)\} \) be an alternate basis. Let \(v = \begin{pmatrix} 3 \\ -2 \\ 14 \end{pmatrix} \). Find \(P_{EB}, P_{BE} \) and \([v]_B \).

1b) In \(\mathbb{R}_2[t] \), let \(E = \{1, t, t^2\} \) be the standard basis and let \(B = \{1 + 2t + 3t^2, t + 4t^2, t^2\} \) be an alternate basis, and let \(v = 3 - 2t + 14t^2 \). Find \(P_{EB}, P_{BE} \) and \([v]_B \).

2. Let \(L : \mathbb{R}^3 \to \mathbb{R}^4 \) be given by \(L \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 + x_3 \\ x_1 + 2x_2 + 3x_3 \\ x_1 + 3x_2 + 5x_3 \\ x_1 + 4x_2 + 7x_3 \end{pmatrix} \).

a) Find the matrix of \(L \) (relative to the standard bases for \(\mathbb{R}^3 \) and \(\mathbb{R}^4 \).

b) Let \(V = \{x \in \mathbb{R}^3 : L(x) = 0\} \). What is the dimension of \(V \)? Find a basis for \(V \).

3. On \(\mathbb{R}^2 \), consider the basis \(B = \{\begin{pmatrix} 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \end{pmatrix}\} \). Let \(L(x) = Ax \), where \(A = \begin{pmatrix} 19 & -30 \\ 10 & -16 \end{pmatrix} \).

a) Find the change-of-basis matrices \(P_{EB} \) and \(P_{BE} \), where \(E = \{\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}\} \) is the standard basis.

b) Find the matrix of \(L \) relative to the \(B \) basis.

c) If we were given the problem of solving the evolution equations \(x(n+1) = Ax(n) \), we would switch to coordinates \(y = [x]_B \). Rewrite the equations in terms of the variables \(y_1 \) and \(y_2 \). You do not need to solve these equations for \(y(n) \) in terms of \(y(0) \). Just get \(y(n+1) \) in terms of \(y(n) \).

4. True or False? Each question is worth 5 points. You do NOT need to justify your answers, and partial credit will NOT be given.

a) If four vectors in \(\mathbb{R}_3[t] \) are linearly independent, then they form a basis for \(\mathbb{R}_3[t] \).

b) If \(A \) is a \(3 \times 5 \) matrix whose rank is two, then the set of solutions to \(Ax = 0 \) is a 2-dimensional subspace of \(\mathbb{R}^5 \).

c) If \(B \) and \(D \) are basis for a vector space \(V \), then the change-of-basis matrices
P_{BD} and P_{DB} are inverses of one another.

d) If P_{BD} is a change-of-basis matrix, then for any vector \mathbf{v}, $[\mathbf{v}]_B = P_{DB} [\mathbf{v}]_D$.

e) The columns of an $m \times n$ matrix A span \mathbb{R}^m if and only the reduced row-echelon form of A has a pivot in each column.