1) Gram Schmidt:

a)(10 points) On \(\mathbb{R}^3 \) with the usual inner product, Use Gram-Schmidt to convert \(x_1 = (1, 2, 0)^T \), \(x_2 = (3, 1, 1)^T \), \(x_3 = (4, 3, -5)^T \) to an orthogonal basis.

\[
y_1 = x_1 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}
\]

\[
y_2 = x_2 - \frac{\langle y_1 | x_2 \rangle}{\langle y_1 | y_1 \rangle} y_1 = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} - \frac{5}{5} \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}
\]

\[
y_3 = x_3 - \frac{\langle y_1 | x_3 \rangle}{\langle y_1 | y_1 \rangle} y_1 - \frac{\langle y_2 | x_3 \rangle}{\langle y_2 | y_2 \rangle} y_2 = \begin{pmatrix} 4 \\ 3 \\ -5 \end{pmatrix} - \frac{10}{5} \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} - 0 \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ -5 \end{pmatrix}
\]

b)(15 points) On \(\mathbb{R}_2[t] \) with the inner product \(\langle f | g \rangle = \int_0^2 f(t) g(t) \, dt \), transform \(\{1, t, t^2\} \) to an orthogonal basis.

\[
y_1 = x_1 = 1
\]

\[
y_2 = x_2 - \frac{\int_0^2 t \, dt}{\int_0^2 1 \, dt} y_1 = t - 1
\]

\[
y_3 = x_3 - \frac{\int_0^2 t^2 \, dt}{\int_0^2 1 \, dt} y_1 - \frac{\int_0^2 t^2(t-1) \, dt}{\int_0^2 (t-1)^2 \, dt} y_2 = t^2 - \frac{4}{3}(t-1) = t^2 - 2t + \frac{2}{3}
\]

2. a)(15 points) Find the equation of the best line through the points \((1, -4), (2, 1), \) and \((3, 2)\).

\[
A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{pmatrix}, \quad A^T A = \begin{pmatrix} 3 & 6 \\ 6 & 14 \end{pmatrix}, \quad A^T b = \begin{pmatrix} -1 \\ 4 \end{pmatrix}, \quad \text{and} \quad \begin{pmatrix} c_0 \\ c_1 \end{pmatrix} = (A^T A)^{-1}(A^T b) = \begin{pmatrix} -19/3 \\ 3 \end{pmatrix}, \quad \text{so the best line is} \quad y = 3x - 19/3.
\]

b)(10 points) Let \(V \) be the subspace of \(\mathbb{R}^3 \) that is the span of the vectors \((1, 2, 3)^T \) and \((1, 1, 1)^T \). Find the point in \(V \) that is closest to \((-4, 1, 2)^T \).
This is essentially the same problem, since the least-squares solution to \(Ax = b\) places \(Ax\) as close as possible to \(b\). Our answer is \(A \left(\begin{array}{c} -19/3 \\ -1/3 \\ 8/3 \end{array} \right) \).

3. On \(\mathbb{C}^3\) with the usual inner product, let

\[
L \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 + ix_2 - ix_3 \\ 2x_2 + (1 - i)x_3 \\ ix_1 + 3x_2 + x_3 \end{pmatrix}
\]

a) (5 points) Find the matrix of \(L\):

\[
L = \begin{pmatrix} 1 & i & -i \\ 0 & 2 & 1 - i \\ i & 3 & 1 \end{pmatrix}
\]

b) (10 points) Let \(x = \begin{pmatrix} 1 \\ 10 \\ 100 \end{pmatrix}\). Compute \(L^\dagger(x)\). Since \(L^\dagger = \begin{pmatrix} 1 & 0 & -i \\ -i & 2 & 3 \\ 1 & i + 1 & 1 \end{pmatrix}\),

\[
L^\dagger x = \begin{pmatrix} 1 - 100i \\ 320 - i \\ 110 + 11i \end{pmatrix}.
\]

c) (10 points) Let \(V\) be the space of real-valued functions on the real line, with the inner product \(\langle f \mid g \rangle = \int_{-\infty}^{\infty} f(t)g(t) dt\). Let \(A : V \to V\) be the linear transformation \(A = t + d/dt\) (That is, \((A(f))(t) = tf(t) + f'(t))\). Let \(g(t) = e^{-t^2/2}\). Compute \(Ag\) and \(A^\dagger g\).

We saw in class that the adjoint to \(d/dt\) is \(-d/dt\), while multiplication by \(t\) is self-adjoint, so \(A^\dagger = t - d/dt\). It’s then an easy calculation to get \(Ag = 0\), \(A^\dagger g(t) = 2te^{-t^2/2}\). [Physics note: In quantum mechanics, \(g\) is the wave function of the ground state of a harmonic oscillator. The operators \(A\) and \(A^\dagger\) are called “ladder operators”, or “raising and lowering operators”. \(A^\dagger\) increases the energy level by one, and \(2te^{-t^2/2}\) is the wave function for the first excited state. \(A\) lowers the energy by one. Since there’s nothing below the ground state, we have \(Ag = 0\].]

4. Grab bag. These are short-answer or true/false questions. Each question is worth 5 points. You do NOT need to justify your answers, and partial credit will NOT be given.
a) True or false? The matrix \(\begin{pmatrix} 5 & 4i \\ -4i & -1 \end{pmatrix} \) has orthogonal eigenvectors.

True. The matrix is Hermitian.

b) True or false? The matrix \(\frac{1}{\sqrt{7}} \begin{pmatrix} 2 - i & -1 + i \\ 1 + i & 2 + i \end{pmatrix} \) is unitary.

True. The columns are orthonormal.

c) Let \(\mathbf{x}(t) \) be the solution to \(\frac{\text{d}\mathbf{x}}{\text{d}t} = A\mathbf{x} \), where \(A = \begin{pmatrix} 0 & 1 & 2 & 3 \\ -1 & 0 & -1 & 4 \\ -2 & 1 & 0 & 5 \\ -3 & -4 & -5 & 0 \end{pmatrix} \) and \(\mathbf{x}(0) = (5, -3, 1, 1)^T \). Find the limit, as \(t \to \infty \), of \(|\mathbf{x}(t)| \). (This has a quick and easy solution, and you do NOT have to diagonalize \(A \)!

Since \(A \) is anti-symmetric, \(e^{At} \) is orthogonal, so \(\mathbf{x}(t) = e^{At}\mathbf{x}(0) \) has the same length as \(\mathbf{x} \), namely 6.

d) True or false? If a matrix \(M \) satisfies \(M = M^T \), then the eigenvalues of \(M \) are real.

False. Some of the matrix elements of \(M \) may be complex, in which case \(M \) won’t be Hermitian. (E.g., \(M \) could be \(i \) times the identity)

e) True or false? If a matrix is unitary, then it is not Hermitian.

False. The identity matrix is both Hermitian and unitary. More generally, any diagonalizable matrix with orthogonal eigenvectors and who eigenvalues are 1 and -1 is both Hermitian and unitary.