
Lie Groups, Problem Set # 2 Solutions

This week’s problems were all from the book, namely Section 2.1, problems 5, 6
and 9, and 2.2, problems 4, 5 and 7.

Problem 2.1.5: (a) First note that ij = k = −ji, so for any complex number α,
jα = ᾱj and αj = jᾱ. If q1 = α+jβ and q2 = γ+jδ, then q̄1 = ᾱ+β̄j̄ = ᾱ−jβ, whose
matrix is the adjoint of the matrix of q1. Likewise, q1q2 = αγ + jβγ + αjδ + jβjδ =

(αγ−β̄δ)+j(βγ+ᾱδ), whose matrix is

(
αγ − β̄δ −β̄γ̄ − αδ̄
βγ + ᾱδ ᾱγ̄ − βδ̄

)
, which is the product

of the matrix of q1 and the matrix of q2. Since quaternionic multiplication is mapped
to multiplication of complex matrices, this gives a homomorphism from Sp(1) (aka
the unit quaternions) to the matrices of the given form with |α|2 + |β|2 = 1, and the
homomorphism is clearly 1–1. But by example 2 the image is precisely SU(2).

(b) If γ̄ = −γ, then the matrix of γ (call it Mγ) is anti-Hermitian, so it has
pure imaginary eigenvalues and orthogonal eigenvectors. By choosing the phases of
the two eigenvectors correctly, we can write Mγ = λPDP−1, where P ∈ SU(2), λ

is real and positive and D =

(
i 0
0 −i

)
. Likewise, we can write Mj = P0DP

−1
0 ,

so D = P−1
0 MjP0. We then have Mγ = λPP−1

0 MjP0P
−1. If we take α to be the

quaternion whose matrix is
√
λP0P

−1, then Mγ = MᾱMjMα, so γ = ᾱjα.

Note that α is not uniquely defined. Replacing α′ = ejφα would work as well. This
ambiguity corresponds the the phase freedom we have in choosing the eigenvectors of
Mγ.

Problem 2.1.6: (a) n = h(3,R) is just the upper triangular matrices, since if
X is not upper-triangular, then exp(tX) ≈ 1 + tX is not in the group for small t.
Notice that the three basis vectors for n (call them eα, eβ and eγ) have all pairwise
products equal to zero, except eαeβ, which equals eγ. In particular, the bracket of
any two matrices is a multiple of eγ ⊂ h(3,R). (b) If X ∈ n, then X3 = 0, and
exp(X) = 1 +X +X2/2 is in H(3, R). Likewise, if a ∈ H(3, R), then (a− 1)3 = 0, so
log(a) = a−1− (a−1)2/2, which is easily seen to be in h(3, R). (c) The brackets in n
are: [eα, eβ] = eγ, [eα, eγ] = [eβ, eγ] = 0. Note that [X, [Y, Z]] = 0 for any X, Y, Z ∈ n.

If Y =

 0 y1 y3

0 0 y2

0 0 0

 and X =

 0 x1 x3

0 0 x2

0 0 0

, then Ad(exp(X))Y = Y + [X, Y ] =

Y + (y1x2 − y2x1)eγ, since all higher-order brackets are zero. The adjoint orbit of Y
is therefore: (i) Y itself, if y1 = y2 = 0. In this case Y is proportional to eγ, and
commutes with all elements of the group. (ii) Y plus an arbitrary multiple of eγ, if



y1 6= 0 or y2 6= 0.

Problem 2.1.9: (a) In the Gram-Schmidt process we construct an orthogonal basis
{w1, w2, . . . , wn} from an arbitrary basis {v1, . . . , vn}. in such a way that each wk
equals vk minus a linear combination of the previous wj’s. Turning things around,
each vk equals wk plus a linear combination of the previous wj’s. Let W be a matrix
whose columns are the w’s, and V be a matrix whose columns are the v’s. Then we
have V = Wb̃, where b̃ is an upper triangular matrix with 1’s on the diagonal. We can
further write W = Ud, where d is diagonal, with positive entries, and the columns of
U are orthonormal. Setting b = db̃, we have V = Ub, with U ∈ O(n) and b ∈ B.

Note that the Gram-Schmidt process is deterministic. Each basis {vj} is associated
with exactly one pair (U, b), and of course each pair (U, b) is associated with one basis
– the columns of V = Ub. This shows that every invertible matrix can be uniquely
written as the product of an orthogonal matrix and an upper-triangular matrix with
positive diagonal entries.

(b) Since b has positive determinant, each element of GL(n,R)+ is associated with
a unique pair (U, b) with U ∈ SO(n) and b ∈ B. Note that B is convex, and hence
contractible (and connected). Likewise, SO(n) is connected. Given V0 = U0b0 and
V1 = U1b1, just pick a path Ut from U0 to U1 and a path bt from b0 to b1 and set
Vt = Utbt. As for analyticity, we know that exp : so(n) → SO(n) is onto. Pick
elements X0 and X1 in so(n) such that exp(X0) = U0 and exp(X1) = U1, and let
Ut = exp(tX0 + (1− t)X1). Then pick bt = t(b1) + (1− t)b0.

Problem 2.2.4: (a) The only sub-algebras of so(3) are either 1-dimensional (with a
trivial bracket), or the full 3-dimensional algebra. To see this, recall that the bracket
in so(3) is essentially the same thing as the cross product in R3. If X and Y are

linearly independent, then [X, Y ] corresponds to a vector orthogonal to both ~X and
~Y , and hence linearly independent of { ~X, ~Y }. Thus if any algebra has dimension
greater than 1, it must have dimension 3.

(b) Even though sl(2, C) is the complexification of so(3), the set of available Lie
sub-algebras is actually MORE than the complexification of the answer to (a). There
exist 2-dimensional subalgebras, all of which are conjugate to the span of H and X+.
To see that these are the ONLY 2-dimensional subalgebras, we argue as follows:

Suppose we have a basis for a 2-D subalgebra, spanned by matrices A and B. Then
[A,B] is a linear combination of A andB. By calling this combination our second basis
vector and rescaling our vectors, we can assume that [A,B] = 2B. If B is semi-simple
and has eigenvalues ±λ, then exp(2πB/λ) = 1, so Ad(exp(2πB/λ))A = A. But by
Baker-Campbell-Haussdorff, Ad(exp(Bt)A = A+2Bt. So B must not be semi-simple,



which implies it must be nilpotent, hence conjugate to X+. The equation [A,B] = 2B
then implies that A = H plus a multiple of B, so our algebra is spanned by H and
X+.

Problem 2.2.5. First consider the 1-dimensional sub-algebras. This is basically
classifying 2×2 traceless non-zero real matrices up to scaling and conjugation. There
are three classes, up to conjugacy by SL(2, R): (i) Those with real eigenvalues (and
real eigenvectors), conjugate to (a multiple of) H, (ii) Those with imaginary eigen-
values, conjugate (with a real change-of-basis) to a multiple of X− − X+, and the
non-diagonalizable elements, conjugate to X+. Next, the 2-dimensional sub-algebras.
As with sl(2,C), we have the span of A and B, with [A,B] = 2B and B = X+ (up to
conjugacy). But then A = H plus a multiple of X+, so we have the span of H,X+.
In other words, all 2-dimensional sub-algebras are conjugate to the upper triangu-
lars. (b) As abstract algebras, all 1-dimensional sub-algebras are isomorphic, and
there is only one 2-dimensional algebra (up to conjugation), so all 2D sub-algebras
are isomorphic.

Problem 2.2.7. If a(t) is a family of automorphisms, then a(x · y) = (ax) · (ay).
Taking a derivative with respect to t at t = 0 and a =identity, we get D(x · y) =
(Dx) ·y+x ·(Dy), where D = a′(0). Thus D is a derivation. Conversely, suppose that
D is a derivation. Let a(t) = exp(Dt), so a′ = aD. Then d/dt[(a(x ·y)− (ax) · (ay)] =
aD(x ·y)− (aDx) · (ay)− (ax) · (aDy) = a(Dx ·y+x ·Dy)−a(Dx ·y)−a(x ·Dy) = 0,
so a(x · y)− (ax) · (ay) is constant. Since it is zero at t = 0, it is zero for all t.


