
Lie Groups, Problem Set # 4 Solutions

Like last week, this week’s problems were all from the book, namely Section 2.6,
problems 3, 5, 6 and 7, Section 2.7 problem 5 and Section 3.1 problem 1.

Section 2.6

2.6.3: There’s a really cheap solution and a not-quite-so-cheap solution. The really
cheap solution is to say that a bunch of maps φk : g→ hk is the same as a single map
g→ ⊕hk, and that ⊕khk is the Lie algebra of the linear group H = H1×H2×· · ·×Hk.
The result then follows from theorem 9. (Note that this only works for a finite
collection of maps, since an infinite product of linear groups is not a linear group.)

The not-so-cheap solution is to mimick the proof of theorem 9 with multiple groups
Hk. Let g′ = {(X,φ1(X), . . . , φn(X))} ⊂ g ⊕ h1 ⊕ · · · ⊕ hn. Let G′ = Γ(g′). This is
a subgroup of G×H1 × · · · ×Hn, and hence is a linear group. Let π0 and fk be the
restrictions to G′ of the projections from G×H1 × · · ·Hn to G and Hk, respectively.
Since L(π0) : g′ → g is an isomorphism, π0 is a local isomorphism, so G′ is a cover of
G. Meanwhile, L(fk) sends (X,φ1(X), . . .) to φk(X), so L(fk) = φk ◦ L(π0).

2.6.5: The notation can get pretty ugly, so I’ll write a solution for the specific
case of homogeneous cubic polynomials. The generalization to other powers should
be pretty clear.

(a) A general cubic polynomial is f(x) =
∑

ijk Pijkξiξjξk, with Pijk a fixed set of
coefficients. By the product rule, the derivative of this is

∑
ijk Pijk(ξ

′
iξjξk + ξiξ

′
jξk +

ξiξjξ
′
k). Note that the coefficient of ξ′` is exactly ∂f/∂ξ`, taking into account the fact

that i, j and k can independently equal `. In other words, the derivative of f is∑
` ξ
′
`∂f/∂ξ`.

Now consider a path a(t) ∈ GL(n,R) through the identity whose derivative at
t = 0 is X, and let a−1x =

∑
ξjej. Then ξ′i = −

∑
j Xijξj, with the minus sign

because we are looking at a−1x, not ax. This makes the derivative of f(a−1x) equal
to
∑

ij −Xijξj
∂f
∂ξi

, as required.

(b) Invariance means that T (exp(tX)) acts trivially for every t and X, which is
equivalent (by the usual differentiation-exponentiation game) to τ(X)f being zero
for every X. Since τ is a linear function of X, we only need to check this for a

basis of so(3), namely the matrices E1 =

 0 0 0
0 0 −1
0 1 0

, E2 =

 0 0 1
0 0 0
−1 0 0

 and



E3 =

 0 −1 0
1 0 0
0 0 0

, corresponding to infinitesimal rotations about the x, y and z

axes. But that’s just saying ξi
∂f
∂ξj

= ξj
∂f
∂ξi

for (ij) = (23), (31) and (12). By the way,

in quantum mechanics the operators y ∂
∂z
− z ∂

∂y
, z ∂

∂x
− x ∂

∂z
, x ∂

∂y
− y ∂

∂x
, are (up to

factors of ~ and i) associated with angular momentum in the x, y and z directions.

There are several natural generalizations. One is to extend from polynomials to
all analytic functions, or simply to all smooth functions. This isn’t quite within
the theory of linear groups, because in that case F is infinite-dimensional. Another
generalization is to work with SO(n) and say that a polynomial function of n variables
is rotationally invariant if and only if ξi

∂f
∂ξj

= ξj
∂f
∂ξi

for every pair (ij) of indices. In n

dimensions there are
(
n
2

)
components to the “angular momentum”.

2.6.6. The double cover SL(2,C) → SO(3,C) is just the complexification of the
double cover SU(2) → SO(3). Specifically, sl(2,C) is the space of traceless 2 × 2
matrices, which is the complexification of su(2) and is isomorphic to C3. Ad gives
a map from SL(2,C) to SL(sl(2,C)) = SL(3,C), but in fact the image is the much
smaller group SO(3,C).

To see this, look at the map L(Ad) = ad. IfX ∈ sl(2,C), we can writeX = Y +iZ,
where Y, Z ∈ su(2). But then ad(X) = ad(Y ) + iad(Z). Since ad(X) and ad(Y ) ∈
so(3), ad(X)+ iad(Y ) is in the complexification of so(3), namely so(3,C). In fact, ad
gives an isomorphism of sl(2,C) and so(3,C), implying that Ad : SL(2,C)toSO(3,C)
is a covering map. But the kernel of this map is ±1, so the map is a double cover.

2.6.7 (a) On sl(2,R) there is an Ad-invariant inner product of signature (2, 1),

namely 〈X|Y 〉 = Tr(XY )/2. The matrices

(
1 0
0 −1

)
,

(
0 1
1 0

)
and

(
0 1
−1 0

)
form an orthonormal basis for this inner product, only with the third matrix having
〈Z|Z〉 = −1 instead of +1. Since sl(2,R) is a 3-dimensional real vector space with
an inner product of signature (2,1), and since Ad maps SL(2,R) to SL(sl(2,R)) =
SL(3) in a way that preserves that inner product, Ad maps SL(2,R) to the identity
component SOo(2, 1) of SO(2, 1). By looking at the Lie map ad, we see that this
map is locally bijective, hence a covering map. (It’s not a covering map of SO(2, 1)
since SO(2, 1) is disconnected, but it’s a covering map of the identity component of
SO(2, 1).) The kernel is ±1 as usual, since ±1 are the only matrices in SL(2,R) that
commute with all of sl(2,R).

(b) This is similar. The Lie Algebra su(1, 1) is spanned by

(
0 i
−i 0

)
,

(
0 1
1 0

)



and

(
i 0
0 −1

)
. Just as with sl(2,R), the Ad-invariant inner product 〈X|Y 〉 =

Tr(XY )/2 has signature (2,1), since the first two basis elements square to +1 and
the last one squares to −1. Thus Ad gives a map from SU(1, 1) so SO(g) = SO(2, 1).
The kernel is ±1, and the map is onto (since both are 3-dimensional and connected).

(c) Let a = 1√
2

(
1 i
i 1

)
. You can explicitly check that Ad(g) sends the three

basis elements of su(1, 1) to the three basis elements of sl(2,R), and so sends SU(1, 1)
to SL(2,R). Incidentally, this version of SU(1, 1) is not the automorphisms of the

Hermitian form with matrix

(
1 0
0 −1

)
. Instead, it’s Aut(φ) with φ̃ =

(
0 i
−i 0

)
,

which is conjugate to

(
1 0
0 −1

)
.

2.7.5: The “if” part is easy. If X is an imaginary diagonal matrix with λ1/λ2
irrational, then exp(tX) is a diagonal matrix with the first two eigenvalues exp(tλ1)
and exp(tλ2). Such exponentials are bounded, so if the group is closed then it is com-
pact, and the image of any continuous homomorphism must be compact. However,
the projection onto the upper left 2 × 2 block has an image set that is not compact
(or even closed), being a line that wraps irrationally around a 2-torus.

For the “only if” part, suppose that X is a matrix such that exp(tX) is not closed.
This means that is an invertible matrix Y and a sequence ti such that exp(tiX)
converges to Y . Since the eigenvalues of exp(tX) are exponentials of eigenvalues of
X, this means that all of the eigenvalues of X must be pure imaginary, since otherwise
exp(tλ) would either go to 0 or ∞, and could not converge to an eigenvalue of Y .
Moreover, X must be diagonalizable, since the exponential of a nontrivial Jordan
block grows without bound, and so cannot converge to a part of Y .

Once we have that X is (conjugate to) a pure imaginary diagonal matrix, we just
have to consider the eigenvalues. If all eigenvalues are integer multiples of a number
iλ0, then exp(tX) is periodic with period 2π/λ0, and is isomorphic to a circle. Hence
it is compact, and in particular closed. If two eigenvalues are not rationally related,
then we have already shown that it is not closed.

3.1.1:(a) Given a real vector space E, let F = E⊕iE, and let C(vR+ivI) = vR−ivI ,
where vR and vI are arbitrary elements of E. Then C is anti-linear and C2 = 1.

Conversely, suppose we are given F and C. Since C2 = 1, the eigenvalues of C
are ±1. Since C is anti-linear, multiplication by i sends the +1 eigenspace to the −1
eigenspace, and vice-versa. Let E be the +1 eigenspace. We then have F = E ⊕ iE.



Thus the construction of E is the inverse of the operation described in the previous
paragraph.

(b) If E is a (right) quaternionic vector space, let F = E as a set. I will call the
basic quaternions î, ĵ and k̂ to distinguish î from the complex number i. Define an
action of the complex numbers on F by (a + bi)v = v(a + b̂i), and define J(v) = vĵ.
This makes F into a complex vector space. Since (a+ b̂i)ĵ = ĵ(a− b̂i), J(αv) = ᾱJv,
and since ĵ2 = −1, J2 = −1.

Conversely, suppose we have a pair (F, J) with J2 = −1 and J anti-linear. Define
v(a+ b̂i+ cĵ + dk̂) to be (a+ bi)v + (c− di)J(v). This makes F into a quaternionic
vector space.


