Lie Groups, Problem Set # 6
Due Thursday, October 18

1) Consider the group G = SO(p, q), obtained from the bilinear form ¢ on RPT9

with ¢ = (1(1)” 01 ), where 1, and 1, are the p X p and ¢ X ¢ identity matrices.
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Writing matrices in block form c D) find an explicit description of the Lie

algebra g = so(p, ¢), and of the subspaces k and p. Show that g’ = k @ ip is a Lie
algebra. Find a group G’ with L(G’) = g’, and show that G’ is isomorphic (actually
conjugate) to SO(p+ q). (It’s not equal to SO(p + q), since the matrices in G’ aren’t
all real, but it’s conjugate.)

The Lie algebra g is all matrices with AT = —A, DT = —D, and BT = C. In
other words, the upper left and lower right blocks are anti-symmetric and the rest of
the matrix is symmetric. (See part (d) to problem 3.1.13 from last week, and restrict
to real matrices) This means that k is the algebra of matrices with B = C' = 0 (in
other words, k = so(p)®so(q)) and p is the vector space of matrices with A = D = 0.

To show that G’ is conjugate to SO(n) with n = p + ¢, we merely show that
g’ = k®ip is conjugate to so(n). Let a be a diagonal matrix whose first p entries are

¢ and whose last ¢ entries are 1. Then if X = (;Cl, 15) € g', with BT = C, then
1 A -B Lo . . .
aXa = c D) which is anti-symmetric and is the general form of an element

of so(n). Since ag’a™ = so(n), aG'a™! = SO(n).
2) Next consider the group G = SU(p, q), obtained from the Hermitian form ¢ on

CPH with ¢ = 10p 01

T g
Lie algebra su(p, q), of k and of p. Show that k @ ip is the Lie algebra of a group G’
that is conjugate to SU(p + q).

. As with Problem 1, find an explicit description of the
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with A* = —A, D* = —D, and B* = C. k is the matrices with B = C =0 and p is
the matrices with A = D = 0. In this case, k @ ip is the space of all traceless anti-
Hermitian matrices. In other words, g’ = su(n) and G' = SU(n). (No conjugation
necessary, but you can conjugate by the identity matrix if you really want to.)

This is almost identical. su(p, ¢) is the set of complex traceless matrices

3) What’s next? Sp(p,q), of course! (Same questions as problems 1 and 2, only
with a slightly different group.)



C g) with AT = —A,

DT = —D and BT = +C. For sp(n) we would have had BT = —C instead. So k is
the matrices with B = C' = 0 and p is the matrices with A = D = 0.

As we saw last week, we want quaternionic matrices <

To understand g’, we must remember that a quaternionic matrix M + jMs, with

. M, —M.
M; and M, complex, can be represented as a larger complex matrix ( ]\/[1 ]\_42 )
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matrix. This means that G’ is not a subgroup of SL(n,H), much less a subgroup of

Multiplying this matrix by ¢ yields < ), which is not a quaternionic

Sp(n). However, multiplying this matrix on the right or left by <1 0 ) turns it

0 —1
back into a quaternionic matrix. Any X € g’ can be represented by a complex matrix
A —Ay iBy —iBs 10 0 O
Ay Ay iBy iB o : o 10 o0
of the form icy —i§’2 D, —pz . Conjugating this by a = 00 1 0
iCy iCy Dy D 000 -1

Al —AQ ZBl ZBQ
A, Ay iBy —iB
iCl —Zég D1 D2
—ZCZ —261 —Dg Dl
A = Al +]A2 = A, B = ZBl + ](ZBQ), C' = 7,01 +j(—ZCQ> and D' = D1 +j(—D2>
Note that we have multiplied both components of B by ¢, while mutiplying one
component of C' by i and the other by —i. This converts the relation BT = C to
B'T = —C', which makes aXa~! an element of sp(n). We have also changed D, but
in a legal way such that D'T = —D’.

gives aXa™ ! = , which is a quaternionic matrix with

4) Now consider SO(2n,C) with the bilinear form ¢ with ¢ = (10 1(; ) Let H
be the set of diagonal matrices in SO(2n,C) and let h be the Lie algebra of H. Show
that h consists of diagonal matrices with entries (A1, ..., Ay, —A1, ..., —\,), and that
any X € g that commutes with all of h is in h. Find a basis for g. Then decompose
g into eigenspaces of ad(h). (In other words, derive the D,, row in Table 3.6)

The condition for being in the Lie algebra is oX = —X T(ﬁ, which means that

X = <é g) with BT = —B, C" = —C, and A" = —D. Put another way, if
jak S n, then Xj—i—n,k-i-n = —Xk’j7 Xj+n,k = _Xk-&-n,j and Xj,k-i—n = _Xk,j—l-n- For h,
we need B = C' = 0 and A diagonal, so D = —A, which is exactly what we needed

to show.



The 2n entries of a generic element X € h are distinct. Since conjugation must
take eigenspaces to eigenspaces, and since the eigenspaces of X are the coordinate

directions, anything that commutes with X must itself be diagonal, and hence must
be in h.

Given our constraints, the obvious basis is: { Ejx—Entkntjs Ejntk—Ekntis Entir—
E,+j}, where in the last two classes we want j < k. These are all eigenvectors of
ad(h), with eigenvalues A\; — A\g, Aj + A, and —A; — Ay

5) Repeat problem 4 for SO(2n + 1,C) with the bilinear form ¢ with ¢ =
0 1, O
1, 0 0 ], thereby deriving the B, row of Table 3.6.
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Letting X = [ C D F |, we have AT = —D, BT = —B and CT = —C as
G H 1
before. In addition, we have I = 0, ET = —H and FT = —@. In terms of matrix
elements, this means that X, p1n = —Xpj, Xjinp = —Xinj and X pin = —Xp jin
as before, and Xj,?n—‘rl = _X2n+1,n+j7 Xj-i—n,?n—l—l = _X2n+1,ja and X2n+1,2n+1 = 0. The

diagonal subgroup is exactly as before, only with a 0 in the lower right corner. Since
the eigenvalues {4+, £Xo,..., £\, 0} are still generically distinct, the only matrix
that commutes with a generic element of h must be diagonal, hence an element itself
of h.

In addition to the basis elements (and eigenvalues) from problem 4, we also have
Ejont1 — Eopti1ng; with eigenvalue \; and E, 1 jon11 — Eopy1; With eigenvalue —\;.

6) And do C,, = Sp(n,C) to round things out.

C D
last week’s HW.) In terms of matrix elements, X, = —X,tkn+jr Xntjk = Xntkjs
and X, 1x = Xgnyj. A basis for g is Ejp — Engpnsy With j # k, Ejpj, Enyjj,
Ejnik + Eppyj with 7 < k and B4 + Enqp; with j < k. The corresponding
eigenvalues are A\j — A, 2X;, —2X;, A\ + A;, and —\; — Ay.

Now we have matrices (A B) with AT = —D, BT = B and CT = C. (See

The diagonal matrices have D = —A, hence of the same form as for SO(2n,C).
As before, the eigenvalues are generically distinct, so only a diagonal matrix can
commute with all of h.

Book problem 3.2.6: This problem refer to ”G”, which throughout the section
means a complex classical group.



(a) If a is semi-simple, then it has eigenvalues and eigenspaces. We must pick
a basis {} of eigenvectors and then consider the matrix p whose columns are the
elements of our basis and show that this matrix is in G. Then a = pdp~!, where d is
diagonal. If ¢ and p are in GG, then so is d, so d is in H.

When G = SL(n,C), there is nothing to show. The eigenvectors are linearly
independent, and we can scale them so that det(p) = 1. In all the other cases, we
must pick a basis such that ¢(&;, &) = ¢(e;, ex) and such that det(p) = 1. This will
then imply that p € G. We’ll worry about the determinant last — it’s pretty easy. For
now, just concentrate on the eigenvectors.

If a € G, then the eigenvectors of G have an orthogonality property: If A\; A\, # 1,
then ¢(&;,&) = 0. This is simply because ¢(&;,&:) = @(a&;, ali) = AjAed (&), Ek)-

If the eigenvalues are €' €5’ ..., e and possibly 1, with all of the eigenvalues

r n
distinct, then the eigenvector §; with eigenvalue ¢; is orthogonal to everything but
the eigenvector &, ; with eigenvalue ej’l. Since ¢ is non-degenerate, ¢(&;, &,+;) cannot
be zero, and we can scale one of the vectors so that ¢(¢;,&,+;) = 1. Which is what
we wanted. (For SO(2n + 1, C), the last eigenvector £, is not orthogonal to itself.

and we can scale it by a complex number so that ¢(£2,41, Eons1) = 1.)

Finally, the determinant. For Sp(n,C) this is automatic, since the volume form is
the n-th exterior power of the symplectic form ¢. Anything that preserves ¢ preserves
volume, and hence has determinant 1. For SO(2n) or SO(2n + 1), p preserving ¢
means that det(p) = +1. If det(p) = —1, switch & and &,,1. This concludes the
proof when a had distinct eigenvalues.

When a has repeated eigenvalues, we can still apply these arguments. Pick an
arbitrary basis for thee eigenspace. Then pick a dual basis for the ¢! eigenspace.

(b) This is identical to (a), only with the eigenvalues of X € g coming in £\
pairs instead of reciprocal pairs. The orthogonality relations still work, since the
eigenvectors of X are the same as the eigenvectors of eX.

(¢) Recall that if matrices X7, ..., X are diagonalizable and commute, then it
is possible to simultaneously diagonalize them. As before, each eigenvector with a
set of eigenvalues is ¢-orthogonal to all of the eigenspaces except the one with minus
that set of eigenvalues. In other words, you can choose the basis §; such that the
eigenvalue of &, ; for each X € h is minus the eigenvalue for {;. But then, after the
change of basis, every element of a is in h. [For what it’s worth, I don’t understand
what the hint is driving at.]

(d) If A is connected and Abelian, then A = I'a, where a is an Abelian sub-
algebra. By (c), a is conjugate to a sub-algebra of h, so A =I'(a) is conjugate to a a
subgroup of H. (I don’t see what the hint has to do with it.)



(e) By (c), an Abelian sub-algebra consisting of semi-simple elements, then a must
take the form chyc™! for some ¢ € G and some sub-algebra hy of h. But this is a

sub-algebra of che™!, so if a is maximal, it must equal chc™?.

(f) Let a = L(A). Then a consists of semi-simple elements since a matrix that
diagonalizes !X for ¢ small also diagonalizes X. Now a must be maximal, since if a* is
an Abelian and semi-simple extension of a, then I'(a™) is an Abelian and semi-simple
extension of A. By (e), a =chc™! so A =cHc™.

(g) For a specific counter-examples, consider SO(3) with the bilinear form. The
4-element group generated by the rotations by 7 around the three coordinate axes
does not have any vectors that are fixed by the entire group. Since evey element of
H fixes eg, our 4-element group is not conjugate to a subgroup of H,

0 1
0 0
is maximal, since there are no 2-dimensional Abelian subalgebras of sl(2,C). But
there’s no way for a non-diagonalizable matrix to be conjugate to an element of
h! Exponentiating, consider the Abelian group consisting of matrices of the form

(h) The simplest example is in SL(2,C). The algebra a generated by (

0 1
Abelianl. But it contains non-diagonalizable elements, so it can’t be conjugate to a
subgroup of H.

( ). It is maximal Abeilian since it is connected and its algebra is maxima

3.2.9 This is in some sense the compact analog of problem 6. Let T be a maximal
torus, and let t be its Lie algebra. Since T"is compact, each element of t must be diag-
onalizable with pure imaginary eigenvalues. (Or else exp(tX) would be unbounded).
We have already proven that elements of the compact groups can be diagonalized by
elements of G (the analog of problem 6a). So simultaneously diagonalize the elements
of t to get that h is conjugate to a subgroup of the diagonal subgroup. Since T is
maximal and 7" = T'(t), t must be conjugate to the entire diagonal subgroup, so T is
conjugate to a Cartan subgroup.



