1. Planes:
a) Find the equation of the plane that goes through the point $(2,1,0)$ and has normal vector ($2,1,-2$).

Let $\mathbf{N}=(2,1,-2)$. The equation of the plane is $\mathbf{N} \cdot \mathbf{x}=\mathbf{N} \cdot(2,1,0)$, or $2 x+y-2 z=5$.
b) Find the distance from the point $(4,13,5)$ to the plane in part (a).

The distance is $\mathbf{N} \cdot[(4,13,5)-(2,1,0)] /|N|=6 / 3=2$.
c) Find the equation of the plane that goes through the three points $(2,1,0)$, $(3,1,4)$ and $(0,0,0)$ [No, this isn't the same plane as part a)].

Since one of the points is the origin, the normal vector to this plane is $\mathbf{N}^{\prime}=(2,1,0) \times(3,1,4)=(4,-8,-1)$, so the plane is $4 x-8 y-z=0$.
d) Find the cosine of the angle between the planes of part (a) and (c).

This is $\left|\mathbf{N} \cdot \mathbf{N}^{\prime}\right| /|N|\left|N^{\prime}\right|=|2| /(3 \times 9)=2 / 27$.
2. Lines
a) Find the equation, in symmetric form, for the line through the point $(2,1,0)$ in the direction $(2,1,-2)$.

The direction vector is $d=(2,1,-2)$, the base point is $P_{0}=(2,1,0)$, so the line is

$$
\frac{x-2}{2}=\frac{y-1}{1}=\frac{z}{-2} .
$$

b) How far is the origin $(0,0,0)$ from this line?

The vector from P_{0} to the origin is $v=(-2,-1,0)$. The distance is $|v \times d| /|d|=|(2,-4,0)| /|(2,1,-2)|=2 \sqrt{5} / 3$.
c) Find the equation, in symmetric form, for the line through the two points $(2,1,0)$ and $(3,-1,4)$.

The direction vector is $d^{\prime}=(3,-1,4)-(2,1,0)=(1,-2,4)$, so our line is

$$
\frac{x-2}{1}=\frac{y-1}{-2}=\frac{z}{4} .
$$

You could also write

$$
\frac{x-3}{1}=\frac{y+1}{-2}=\frac{z-4}{4} .
$$

d) Find the equation (in symmetric form) of the line through $(2,1,0)$ that is perpendicular to the lines of parts (a) and (c).

The vector normal to d and d^{\prime} is $d \times d^{\prime}=(0,-10,-5)$. Rescale it to $(0,2,1)$. Our line is

$$
x=2, \quad \frac{y-1}{2}=\frac{z}{1} .
$$

(If you don't rescale the direction vector, then you get an uglier, but completely equivalent, answer.)
3. Parametrized curves: Consider the parametrized curve

$$
\mathbf{r}(t)=\left(\frac{t^{2}}{2}, \frac{4}{3} t^{3 / 2}, 2 t+5\right)
$$

a) Compute the position, velocity, unit tangent vector and speed at time $t=1$.
$\mathbf{r}^{\prime}(t)=\left(t, 2 t^{1 / 2}, 2\right)$, so position $=\mathbf{r}(1)=(1 / 2,4 / 3,7)$, velocity $=\mathbf{r}^{\prime}(1)=$ $(1,2,2)$, speed $=|(1,2,2)|=3$, and unit tangent vector $=\mathbf{r}^{\prime}(1) /\left|\mathbf{r}^{\prime}(1)\right|=$ (1/3, 2/3, 2/3).
b) Compute the arc-length of the curve from $t=0$ to $t=2$.

Note that the speed is $\left|\mathbf{r}^{\prime}(t)\right|=\sqrt{t^{2}+4 t+4}=t+2$, so the arclength is $\int_{0}^{2}(t+2) d t=6$.
4. Polar coordinates.
a) Sketch the curve $r=1+\cos (2 \theta)$. Mark clearly the angles (if any) where the curve goes through the origin, and the angles where r is maximal.

There are two lobes, one to the right and one to the left. The curve goes through the origin at $\theta=\pi / 2$ and $\theta=3 \pi / 2$. The farthest points are when $\cos (2 \theta)=1$, so $2 \theta=2 n \pi$, so $\theta=n \pi$. That is, the positive and negative x directions.
b) Find (in polar coordinates!) the points where this curve intersects the circle $r=1 / 2$.

Note that r is never negative, so we don't have to worry about "accidental" intersections. Set $1 / 2=1+\cos (2 \theta)$, so $\cos (2 \theta)=-1 / 2$, to $2 \theta= \pm 2 \pi / 3+2 n \pi$, so $\theta= \pm \pi / 3+n \pi$. For $\theta \in[0,2 \pi)$, these are the points $(r, \theta)=(1 / 2, \pi / 3),(1 / 2,2 \pi / 3),(1 / 2,4 \pi / 3),(1 / 2,5 \pi / 3)$.
c) Write down a definite integral that gives the area, in the first quadrant, inside the curve $1+\cos (2 \theta)$ but outside the circle $r=1 / 2$.

$$
\int_{0}^{\pi / 3} \frac{(1+\cos (2 \theta))^{2}-(1 / 2)^{2}}{2} d \theta
$$

Extra credit: Evaluate this integral. Expand it out and use the double-angle formula $\cos ^{2}(2 \theta)=(1+\cos (4 \theta)) / 4$ to convert the integral to

$$
\int_{0}^{\pi / 3} \frac{5}{8}+\cos (2 \theta)+\frac{\cos (4 \theta)}{4} d \theta=\frac{5 \pi}{24}+\frac{7 \sqrt{3}}{32}
$$

5. Partial derivatives. Consider the function of two variables $F(x, y)=$ $x^{3} y+2 x+y^{2}$.
a) Compute $\partial F / \partial x$ and $\partial F / \partial y$ and evaluate these at the point $(1,1)$.
$\partial F / \partial x=3 x^{2} y+2$, evaluated at $(1,1)$ gives $5 . \partial F / \partial y=x^{3}+2 y$, evaluated at $(1,1)$ gives 3 .
b) Use these to estimate the value of $F(1.01,1)$ and the value of $F(1,1.01)$.

The change in F from $(1,1)$ to $(1.01,1)$ is roughly $(0.01) \partial F / \partial x=0.05$, so $F(1.01,1) \approx 4.05$. The change in F from $(1,1)$ to $(1,1.01)$ is roughly $(0.01) \partial F / \partial y=0.03$, so $F(1.01,1) \approx 4.03$.
c) Estimate the value of $F(1.02,1.01)$.

Add the effect of changing x to the effect of changing $y: 4+5(0.02)+$ $3(0.01)=4.13$.
d) Compute the second-order partial derivatives $\partial^{2} F / \partial x^{2}, \partial^{2} F / \partial y^{2}$, and $\partial^{2} F / \partial x \partial y$.

In order, the answers are $6 x y, 2$, and $3 x^{2}$.

