
M408M Final Exam Solutions, December 14, 2013

1. Lines and planes. (16 pts) Let P (1, 0, 1), Q(0, 1, 2), R(−1,−1, 1), and S(0, 0, 10) be points
in R3.

a) Let L be the line through P and Q. Express the equation of L in either vector or
parametric form (your choice), and then express the equation in symmetric form.

We first compute
−→
PQ = 〈−1, 1, 1〉. Our line in vector form is then

r(t) = P+t
−→
PQ = 〈1, 0, 1〉+t〈−1, 1, 1〉. In symmetric form this works out to 1−x = y = z−1.

b) Find the equation of the plane through P , Q and R.

First we compute the normal vector n =
−→
PQ×

−→
PR = 〈−1, 1, 1〉×〈−2,−1, 0〉 = 〈1,−2, 3〉.

Our plane is then 1(x− 1)− 2y + 3(z − 1) = 0, or x− 2y + 3z = 4.

c) Find the distance from S to the plane you found in part (b).

Since
−→
PS = 〈−1, 0, 9〉, the distance is |

−→
PS · n|/|n| = 26/

√
14.

d) Find the distance from R to the line L.

This is |
−→
PR×

−→
PQ|/|

−→
PQ| = |〈−1, 2,−3〉|/|〈−1, 1, 1〉| =

√
14/3.

2. Parametric curves (12 pts)

a) First consider the parametric curve x = 2t−2 sin(t), y = 3−2 cos(t) in R2. Find the slope
of the line tangent to this curve at t = π/4 (i.e. tangent at the point (π/2−

√
2, 3−

√
2)).

At t = π/4, dy/dt = 2 sin(t) =
√

2 and dx/dt = 2 − 2 cos(t) = 2 −
√

2, so the slope is

dy/dx = dy/dt
dx/dt

=
√
2

2−
√
2

= 1 +
√

2.

b) Now consider the curve r(t) = 〈2t− 2 sin(t), 3− 2 cos(t), 4t〉. If this is the trajectory of a
particle, find the velocity and acceleration as a function of time.

v = 〈2− 2 cos(t), 2 sin(t), 4〉 and a = 〈2 sin(t), 2 cos(t), 0〉.
c) Find the equation of the line tangent to this 3D curve at t = π/4. (You can express your
answer in your choice of vector, parametric, or symmetric form.)

The tangent vector to the line is v(π/4) = 〈2 −
√

2,
√

2, 4〉. In vector form, the line is
then r(t) = 〈π

2
−
√

2, 3−
√

2, π〉+ t〈2−
√

2,
√

2, 4〉.
3. Polar coordinates. (16 pts) Consider the polar curve r = eθ, where θ runs from 0 to 2π.

a) Find the slope of this curve at θ = π/6.
dy
dx

= dy/dθ
dx/dθ

= r cos(θ)+r′ sin(θ)
−r sin(θ)+r′ cos(θ) = eθ cos(θ)+eθ sin(θ)

eθ cos(θ)−eθ sin(θ) . Plugging in cos(π/6) =
√

3/2 and

sin(π/6) = 1/2 gives dy
dx

=
√
3+1√
3−1 = 2 +

√
3.

b) Find the arc-length of this curve.∫ 2π

0

√
r2 + (r′)2dθ =

∫ 2π

0

√
2eθdθ =

√
2(e2π − 1).

c) Let R be the region bounded by the positive x axis, the positive y axis, and this curve.
Find the area of R.

The area is
∫ π/2
0

r2

2
dθ =

∫ π/2
0

e2θ

2
dθ = e2θ

4

∣∣∣π/2
0

= (eπ − 1)/4.
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d) Compute
∫∫

R
3re−3θdA.

This is
∫ π/2
0

∫ eθ
0

3re−3θrdrdθ =
∫ π/2
0

e−3θr3|eθ0 dθ =
∫ π/2
0

dθ = π/2.

4. Partial derivatives and gradients. (16 pts) Let f(x, y, z) = y2 + xy + (y + 1) ln(z) + 3y.

a) Compute the gradient of f(x, y, z) as a function of (x, y, z).

~∇f = 〈y, 2y + x+ ln(z) + 3, y+1
z
〉.

b) Compute all the second order partial derivatives. (There are 9 of these, but fxy = fyx,
etc, leaving six calculations.)

fxx = 0, fxy = fyx = 1, fxz = fzx = 0, fyy = 2, fyz = fzy = 1
z

and fzz = −(y+1)
z2

.

c) If r(t) = 〈cos(t), sin(t), 1 + t〉 is a parametrized curve, compute df(r(t))
dt

at t = 0.

At t = 0, x = 1, y = 0 and z = 1, so the gradient is 〈0, 4, 1〉. Meanwhile dr/dt =

〈− sin(t), cos(t), 1〉 = 〈0, 1, 1〉. df(r)/dt = ~∇f · dr
dt

= 5.

d) Let S be the surface f(x, y, z) = 0. Find the equation of the plane tangent to S at (1, 0, 1).

The normal vector is the gradient, so our tangent plane is 4y + z = 1.

5. Maxima and minima. (12 pts) Note that parts (a) and (b) have nothing to do with parts
(c) and (d). Parts (c) and (d) ask you to solve the same problem in two different ways. To
get credit for a part, you must solve it using the method indicated.

a) Find all local extrema of the function h(x, y) = x3 − 12xy + 8y3.

Since fx = 3x2 − 12y and fy = −12x + 24y2, the critical points are when y = x2/4 and
x = 2y2, which implis that y = y4, so y = 0 or y = 1. Since x = 2y2, our critical points are
then at (0, 0) and (2, 1).

b) For each critical point, indicate whether it is a local maximum, a local minimum, or a
saddle point.

fxx = 6x, fxy = 1 and fyy = 48y. At (0, 0) we have fxx = fyy = 0, so this is a saddle
point. At (2, 1) we have fxx = 12 and fyy = 48. Since fxxfyy > f 2

xy, this is a local minimum.

c) Using Lagrange multipliers, find the maximum and minimum values of f(x, y) = xy
on the ellipse x2

4
+ y2 = 1.

~∇f = 〈y, x〉 and ~∇g = 〈x/2, 2y〉, so our equations are y = λx/2 and x = 2λy. Combining
these gives x = λ2x, so either x = 0 or λ = ±1. x = 0 doesn’t work, since then y = 0λ/2 = 0,
and we’re not on the ellipse. So we must have λ = ±1. If λ = 1, then x = 2y, and (using the
fact that x2/4 + y2 = 1) we’re at either (

√
2,
√

2/2) or (−
√

2,−
√

2/2), both of which have
xy = 1. If λ = −1, the we’re at either (

√
2,−
√

2/2) or (−
√

2,
√

2/2), both of which have
xy = −1. So the maximum value is 1 and the minimum value is -1.

d) Now write the ellipse as a parametrized curve and express f(x, y) as a function of t.
Then use 1-dimensional calculus to find the maximum and minimum values of f .

The simplest parametrization of the ellipse is x = 2 cos(t) and y = sin(t). Then f(x, y) =
2 sin(t) cos(t) = sin(2t). This reaches a maximum value of 1 at 2t = π/2 (so t = π/4 or
5π/4) and a minimum value of -1 at 2t = −π/2 (so t = 3π/4 or −π/4). Those four times
correspond exactly to the four points we found earlier.
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6. (4 pts) Let R be the region in the plane between the parabola y = x2 and the line y = 2x.
Compute

∫∫
R
x2 + 2ydA.

Integrating first over y and then x, this is
∫ 2

0

∫ 2x

x2
x2 + 2ydydx =

∫ 2

0
x2y + y2|2xx2 dx =∫ 2

0
2x3 + 4x2 − 2x4dx = 8 + 32

3
− 64

5
= 88

15

7. A trickier double integral. (12 pts) Consider the iterated integral∫ 1

0

∫ 1

x2
sin(πy3/2)dydx.

a) Draw the region of integration. (In other words, rewrite the iterated integral as a double
integral

∫∫
R

(some function)dA and draw a picture of R.)

This is the region in the first quadrant above the parabola y = x2, and below the line
y = 1. Note that its left boundary is the y-axis and its right boundary is y = x2, or
equivalently x =

√
y.

b) Rewrite the double integral as an iterated integral where we first integrate over x and
then over y. Be careful with your limits of integration!∫ 1

y=0

∫ √y
x=0

sin(πy3/2)dxdy.

c) Evaluate this new-and-improved iterated integral.

After doing the inner integral, we have
∫ 2

0

√
y sin(πy3/2)dy = −2 cos(πy3/2)

3π

∣∣∣1
0

= 4
3π

.

8. Change of variables. (12 pts) Let R be the diamond-shaped region with corners at P (1, 0),
Q(2,−1), S(3, 0) and T (2, 1). We are trying to evaluate the double integral

∫∫
R
ex+2ydA.

a) Write x and y as functions of new parameters u and v, so that we are at P when u = v = 0,
Q when u = 1 and v = 0, T when v = 1 and u = 0, and S when u = v = 1. In other words,
find a mapping that sends the unit square to R.

As we discussed in class and in the review session, we want 〈x, y〉 = P + u
−→
PQ+ v

−→
PT =

〈1, 0〉+u〈1,−1〉+v〈1, 1〉. Breaking things up into components, this is x = 1+u+v, y = v−u.

b) Find the Jacobian of this mapping.

The matrix of partial derivatives is

(
1 1
−1 1

)
, whose determinant is 2.

c) Rewrite the double integral as an integral over u and v.

Since dxdy = 2dudv and ex+2y = e1−u+3v, we have∫ 1

0

∫ 1

0

2e1−u+3vdudv.

d) Evaluate the double integral.

This works out to 2
3
(e3 − 1)(e− 1) = 2

3
(e4 − e3 − e+ 1).
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