M408N First Midterm Exam Solutions, September 20, 2012

- 1) (15 pts) Suppose that at a certain time there are 500 bacteria growing in a Petri dish. The population grows exponentially, doubling every hour.
- a) Find a formula for the number x(t) of bacteria t hours later.
 - $x(t) = 500 \cdot 2^t$, since we start with 500 and double every hour.
- b) Find a formula for t in terms of x.
- $2^t = x/500$, so $t = \log_2(x/500)$. You could also write $\log_2(x) \log_2(500)$ or $\log_2(x) 3\log_2(5) 2$.
- c) Now suppose that the bacteria double every 20 minutes (instead of every hour). How does this change the answers to parts (a) and (b)?

In that case we would have $x(t) = 500 \cdot 2^{3t} = 500 \cdot 8^t$ and $t = \log_2(x/500)/3$ (or $\log_8(x/500)$).

- 2. (15 points) Compute the following quantities exactly. The answers may involve square roots, in which case you can leave your answers looking like $\sqrt{3}/7$ or $5\sqrt{2}$ (which aren't actually the answers, of course).
- a) Draw a right triangle where one of the angles has a tangent of 2. Mark the lengths of the three sides clearly. Then compute the sine of that angle.

The triangle I had in mind has opposite side of length 2 and adjacent side of length 1 (that is, vertices at (0,0), (1,0) and (1,2)). The hypotenuse is then $\sqrt{2^2 + 1^2} = \sqrt{5}$, and the sine is opposite/hypotenuse = $2/\sqrt{5}$ (or $2\sqrt{5}/5$).

b) Now draw a right triangle involving an angle whose sine is 1/2. Mark the lengths of all three sides, and compute the secant of that angle.

Now the opposite side has height 1/2 and the hypotenuse has length 1, so the adjacent side has length $\sqrt{1-(1/2)^2}=\sqrt{3}/2$. The secant is hypotenuse/adjacent = $2/\sqrt{3}$.

c) Compute $\sin(\cos^{-1}(1/3))$.

This is the sine of an angle whose cosine is 1/3. Draw a triangle with adjacent side 1/3 and hypotenuse 1, hence opposite side of length $\sqrt{8/9}$, so the sine of the angle is $\sqrt{8/9} = 2\sqrt{2}/3$.

3. (10 pts) Consider the function
$$f(x) = \begin{cases} 2x+1 & x<2\\ 4 & x=2\\ 7-x & x>2 \end{cases}$$

a) Compute $\lim_{x\to 2^+} f(x)$, $\lim_{x\to 2^-} f(x)$ and $\lim_{x\to 2} f(x)$, if they exist.

 $\lim_{x\to 2^+} f(x) = \lim_{x\to 2^+} 7 - x = 5$, $\lim_{x\to 2^-} f(x) = \lim_{x\to 2^-} 2x + 1 = 5$. Since both 1-sided limits give 5, $\lim_{x\to 2} f(x) = 5$.

b) Is f(x) continuous everywhere? Why or why not?

f(x) is NOT continuous, since $5 = \lim_{x\to 2} f(x) \neq f(2) = 4$. The function has a removable discontinuity at x=2.

4. (30 pts) Compute the following limits:

a)
$$\lim_{x \to -1} \frac{x^2 - x - 2}{x - 2}$$
.

Both the numerator and denominator are continuous, and the denominator doesn't go to 0 as $x \to -1$, so this function is continuous at x = -1. Plug in x = -1 to get 0/(-3) = 0.

b)
$$\lim_{x\to 2} \frac{x^2 - x - 2}{x - 2}$$
.

The numerator is (x-2)(x+1), so we have

lim_{$$x\to 2$$} $\frac{(x-2)(x+1)}{x-2} = \lim_{x\to 2} x + 1 = 3.$

c)
$$\lim_{x \to 1^+} \frac{x}{1-x}$$
.

When x is slightly bigger than 1, the denominator is small and negative, while the numerator is close to 1, so the ratio is huge and negative. This makes the limit $-\infty$.

d)
$$\lim_{x \to (\frac{\pi}{2})^+} \sin(x) \tan(x)$$
.

First, expand $\sin(x)\tan(x) = \sin^2(x)/\cos(x)$. When x is a little bigger than $\pi/2$, $\cos(x)$ is slightly negative, while $\sin^2(x)$ is approximately 1. This is just like (c), with a limit of $-\infty$.

e)
$$\lim_{x \to \infty} \frac{2x^3 - x^2 + 17x - 5}{3x^3 + 139x^2 - 47x + \pi}$$

Divide the top and the bottom by x^3 to get $\lim_{x\to\infty} \frac{2-x^{-1}+17x^{-2}-5x^{-3}}{3+139x^{-1}-47x^{-2}+\pi x^{-3}} = 2/3$.

f)
$$\lim_{x \to -\infty} \frac{|x^5 + 3|}{x^4 + 2x^2 + 1}$$
.

The numerator grows faster than the denominator, so the limit is either

 $\pm \infty$. To see which, imagine plugging in a large negative value of x. The numerator is positive (being an absolute value), as is the denominator (which is x^4 plus change), so the ratio is positive and growing. The limit is ∞ .

- 5. (30 points) True or False (no partial credit, and no penalty for guessing)
- a) If $\lim_{x\to a^-} f(x)$ and $\lim_{x\to a^+} f(x)$ both exist, then $\lim_{x\to a} f(x)$ exists. FALSE. The one-sided limits might be different. (E.g., $\lim_{x\to 0} |x|/x$.)
- b) If f(x) is a polynomial, then $\lim_{x\to a} f(x) = f(a)$. TRUE. All polynomials are continuous.
- c) The statement $\lim_{x\to\infty} f(x) = -\infty$ means that whenever x is sufficiently large and positive, f(x) is large and negative.

TRUE. (The precise definition requires us to say what "large" means.)

d) If f(x) and g(x) are continuous at x = a, then so are f(x) + g(x), f(x)g(x), and f(x)/g(x).

FALSE. For f(x)/g(x) to be continuous, or even defined, we also need $g(a) \neq 0$.

- e) $\ln(75e^2) 2\ln(5) \ln(3) = 2$. TRUE. $\ln(75e^2) = \ln(3 \cdot 5^2 \cdot e^2) = \ln(3) + 2\ln(5) + 2$.
- f) The inverse function of $f(x) = 3e^x + 1$ is $f^{-1}(x) = \log_e(\frac{x-1}{3})$. TRUE. If $y = 3e^x + 1$, then $e^x = (y-1)/3$ and $x = \ln((y-1)/3)$. (And $\ln = \log_e$)
- g) For every x where both sides are defined, $\cot^2(x) + 1 = \sec^2(x)$. FALSE. $\cot^2(x) + 1 = \csc^2(x)$, not $\sec^2(x)$.
- h) If f(x) is continuous on the interval [0,4], then $\lim_{x\to 3} f(x)$ must exist. TRUE. Not only that, but the limit must equal f(3).
- i) $\log_{10}(e) = \log_e(10)$. FALSE. These numbers are reciprocals. Since 10 > e, los

FALSE. These numbers are reciprocals. Since 10 > e, $\log_e(10) > 1$ while $\log_{10}(e) < 1$.

j) $\log_{32}(2) = 1/5$. TRUE. $32 = 2^5$, so $2 = 32^{1/5}$.