M408N First Midterm Exam (with solutions), October 8, 2015

- 1) (15 pts) (Inverse) trig functions
- a) Draw a right triangle where one of the angles is $\tan^{-1}(2)$. (There are many possible answers, all with the same shape but different overall size. Pick your favorite.) Label the lengths of all three sides and then compute $\sin(\tan^{-1}(2))$.

One choice for this triangle would have opposite side 2, adjacent side 1, and hypotenuse $\sqrt{2^2+1^2}=\sqrt{5}$. By soh-cah-toa, the sine of $\tan^{-1}(2)$ is $2/\sqrt{5}$.

b) Compute $\cos(5\pi/6)$.

This is one of the angles that you should have memorized. $5\pi/6$ radians is 150 degrees, the sine is 1/2 and the cosine is $-\sqrt{3}/2$.

c) Draw a right triangle where one of the angles is $\sec^{-1}(2)$. Label the lengths of all three sides and then compute $\tan(\sec^{-1}(2))$.

This triangle has hypotenuse 2, adjacent side 1, and so opposite side $\sqrt{2^2-1^2}=\sqrt{3}$. The tangent of $\sec^{-1}(2)$ is then $\sqrt{3}/1=\sqrt{3}$. You could also get this from the formula $\tan^2(\theta)=\sec^2(\theta)-1=3$. By the way, the angle $\sec^{-1}(2)$ is $\pi/6$, or 30 degrees.

2. (20 points) Compute the following limits:

a)
$$\lim_{x \to 4} \frac{x^2 - 5x + 4}{x^2 - 16} = \lim_{x \to 4} \frac{(x - 1)(x - 4)}{(x + 4)(x - 4)} = \lim_{x \to 4} \frac{(x - 1)}{(x + 4)} = \frac{3}{8}.$$

b)
$$\lim_{x \to \infty} \frac{x^2 - 16}{x^2 - 16 + 3e^{-x}} = \lim_{x \to \infty} \frac{1 - 5/x + e^{-x}/x^2}{1 - 16/x^2 + 3e^{-x}/x^2} = \frac{1}{1} = 1.$$
 This is because, as $x \to \infty$, $1/x$, $1/x^2$ and e^{-x}/x^2 all go to zero.

c)
$$\lim_{x \to -\infty} \frac{x^2 - 5x + e^{-x}}{x^2 - 16 + 3e^{-x}}$$
.

In this direction, e^{-x} does NOT go to zero. Rather, it is the dominant term, growing (much) faster than all the other terms, so the limiting ratio is 1/3.

$$d) \lim_{x \to 0+} \frac{\tan(3x)}{4x}.$$

Rewrite this as $\frac{\sin(3x)}{4x\cos(4x)}$. As $x \to 0$, $\sin(3x)/3x \to 1$, so $\sin(3x)/4x \to 3/4$, while $\cos(4x) \to \cos(0) = 1$, so the limit is 3/4.

- 3. (15 pts) Continuity and discontinuities.
- a) Where does the function $f(x) = \frac{x^2 9}{x^2 4x + 3}$ fail to be continuous?

The ratio of polynomials is continuous everywhere except where the denominator is zero. Since the denominator factors as (x-3)(x-1), the discontinuities are at x=1 and x=3.

b) For each point where f(x) isn't continuous, identify the kind of discontinuity.

The numerator factors as (x-3)(x+3). The discontinuity at x=3 is **removable**, since the limit as $x \to 3$ exist (and equals 3), insofar as the (x-3)'s in the numerator and denominator cancel. However, the function has an **infinite discontinuity** at x=1, since the denominator goes to zero while the numerator does not.

4. (15 pts) Definition of derivative.

Consider the limit

$$\lim_{h \to 0} \frac{(5+h)e^{5+h} - 5e^5}{h}.$$

a) Find a function f(x) and a point a such that this limit equals f'(a).

There's actually more than one answer, but the simplest one is $f(x) = xe^x$ and a = 5. Then we're taking the limit of (f(a+h) - f(a))/h, which is f'(a).

b) Using what you know about taking derivatives, evaluate the limit.

By the product rule, $f'(x) = e^x + xe^x = (x+1)e^x$, so $f'(5) = 6e^5$.

- 5. (20 pts) Compute the derivatives of the following functions with respect to x.
- a) $(\sin(x) + 3)(e^x + x^2)$.

By the product rule, this is $(\cos(x))(e^x + x^2) + (\sin(x) + 3)(e^x + 2x)$.

b) $\frac{\sin(x) + 3}{e^x + x^2}$.

By the quotient rule, this is $\frac{(\sin(x)+3)(e^x+2x)-(\cos(x))(e^x+x^2)}{(e^x+x^2)^2}$.

c) $\sin(e^{5x} + x^2)$.

By the chain rule (applied twice), this is $\cos(e^{5x} + x^2)(5e^{5x} + 2x)$.

d) $\sin^2(x) + \cos^2(x)$.

There are two ways to see that this is zero. One is to recognize that $\sin^2(x) + \cos^2(x) = 1$. The other is to just use the chain rule or product rule on each term. The derivative is $2\sin(x)\cos(x) + 2\cos(x)(-\sin(x)) = 0$.

6. (15 pts) Implicit differentiation.

Find the equation of the line tangent to the curve $x^2 + y^3 = 9$ at the point (1,2).

We have $2x + 3y^2y' = 0$, so $y' = \frac{-2x}{3y^2}$. At (1,2) this gives y' = -2/12 = -1/6. By the point-slope formula, the equation of our line is then (y-2) = -(x-1)/6, or equivalently $y = \frac{13-x}{6}$, or equivalently 6y + x = 13.