M408N Class summary

- 1. Close is good enough! (limits)
 - (a) Meaning of limit statements
 - i. Limits as $x \to a$, $x \to a^+$, $x \to a^-$
 - ii. Limits as $x \to \infty$ or $x \to -\infty$
 - iii. Limits can equal $L, +\infty, -\infty$
 - iv. Meaning of ∞ a process, not a number
 - (b) Using limit laws
 - i. Sum, product, and quotient rules
 - ii. Squeeze (sandwich) theorem
 - (c) Continuity
 - i. Definition: $\lim_{x\to a} f(x) = f(a)$.
 - ii. Identifying when a function is continuous
 - iii. Intermediate value theorem.
- 2. Track the changes (derivatives)
 - (a) Definitions as a limit:
 - i. $f'(a) = \lim_{x \to a} [f(x) f(a)]/(x a)$
 - ii. $f'(a) = \lim_{h \to 0} [f(a+h) f(a)]/h$.
 - iii. $f'(x) = \lim_{h\to 0} [f(x+h) f(x)]/h$.
 - (b) Interpretation as:
 - i. Instantaneous rate of change
 - ii. Slope of tangent line
 - iii. Best linear approximation (differentials and linearization)
 - iv. Conversion factor from dx to dy.
 - (c) How to compute it:
 - i. Building blocks: derivatives of x^n , e^x , trig functions and logs.
 - ii. Sum, product and quotient rules
 - iii. Chain rule
 - iv. Implicit differentiation and derivatives of inverse functions.
 - v. Logarithmic differentiation

- (d) What's it good for? (Besides max/min)
 - i. Understanding shapes of graphs
 - ii. Related rates
 - iii. L'Hôpital's rule
 - iv. Linearization/differentials
 - v. Solving equations with Newton's method
 - vi. Higher derivatives give curvature, etc.
 - vii. Velocity, acceleration, marginal quantities in economics
 - viii. Differential equations and anti-derivatives
- 3. What goes up has to stop before coming down (max/min)
 - (a) Absolute maxima and minima
 - i. Extreme value theorem. Every continuous function on a closed interval has a maximum/minimum.
 - ii. Max/min occur either at
 - A. Endpoints, or
 - B. Critical points, where f'(x) = 0 or doesn't exist.
 - (b) Local maxima and minima
 - i. First derivative test: Is the function increasing, decreasing, or flat?
 - ii. 2nd derivative test: Is a critical point a local max (f'' < 0), local $\min(f'' > 0)$, or unclear (f'' = 0 or f'' DNE).
 - (c) Using first and second derivatives to understand a function.
 - i. Sign charts for f, f', f''.
 - ii. Understanding what signs of f' and f'' tell you.
 - (d) Optimization
 - i. Draw a picture
 - ii. Define your variables, and figure out what you are trying to maximize or minimize
 - iii. Write down relations between variables. Eliminate all but one variable.
 - iv. Find critical points and compare values.
 - v. Interpret!

- 4. The whole is the sum of the parts. (integration)
 - (a) The idea: Bulk quantities are limits of sums.
 - (b) Estimating with rectangles Riemann sums
 - (c) Definite integrals are limits of Riemann sums as you slice finer and finer ("Close is good enough" strikes again)
- 5. The whole change is the sum of the partial changes (FTC)
 - (a) Keeps straight the difference between definite integals, indefinite integrals and anti-derivatives.
 - (b) Getting definite integrals by anti-differentiation: $\int_a^b f(x)dx = F(b) F(a)$.
 - (c) Indefinite integrals are anti-derivatives: $\frac{d}{dx} \int_a^x f(t) dt = f(x)$.
 - (d) Combine with chain rule to compute $\frac{d}{dx} \int_{g(x)}^{h(x)} f(t) dt$.