1) Let \(Q(t) \) be the percentage of students at UT who have dropped a class in week \(t \), and suppose that the rate equation for \(Q \) is
\[
Q' = 0.2Q - 0.005Q^2
\]
and that \(Q(5) = 10 \).

a) Use Euler’s method with step size \(h = 2 \) to estimate \(Q(7) \).

One step of Euler’s method is really just the microscope equation: \(Q'(5) = 0.2(10) - 0.005(10)^2 = 1.5 \), so \(Q(7) \approx Q(5) + 2Q'(5) = 10 + 3 = 13 \).

b) Use Euler’s method with step size \(h = 2 \) to estimate \(Q(3) \).

\(Q(3) \approx Q(5) - 2Q'(5) = 10 - 3 = 7 \).

c) Use Euler’s method with step size \(h = 1 \) to estimate \(Q(7) \).

\(Q(6) \approx Q(5) + 1Q'(5) = 10 + 1.5 = 11.5 \). We then compute \(Q'(6) \approx 0.2(11.5) - 0.005(11.5)^2 = 1.63875 \) and \(Q(7) \approx Q(6) + 1Q'(6) \approx 11.5 + 1.63875 = 13.13875 \).

2) Here is a table of values of the function \(f(x) = \tan(x \text{ degrees}) \).

<table>
<thead>
<tr>
<th>(x) (in degrees)</th>
<th>(\tan(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>0.9656887748</td>
</tr>
<tr>
<td>44.9</td>
<td>0.99651541969</td>
</tr>
<tr>
<td>44.99</td>
<td>0.99965099505</td>
</tr>
<tr>
<td>45</td>
<td>1</td>
</tr>
<tr>
<td>45.01</td>
<td>1.00034912679</td>
</tr>
<tr>
<td>45.1</td>
<td>1.00349676506</td>
</tr>
<tr>
<td>46</td>
<td>1.03553031379</td>
</tr>
</tbody>
</table>

a) Find \(f'(45) \) to at least 4 decimal places. [Note: you may have already learned a formula for the derivative of the tangent function, but that formula probably uses radians rather than degrees, so it gives the wrong answer.]

If you use forward differences, the best estimate is
\[
f'(45) \approx \frac{f(45.01) - f(45)}{0.01} = \frac{0.00034912679}{0.01} = 0.034912679.
\]

Using backwards differences, we get
\[
f'(45) \approx \frac{f(45) - f(44.99)}{0.01} = \frac{0.000349004941}{0.01} = 0.0349004941.
\]
Using centered differences gives

\[f'(45) \approx \frac{f(45.01) - f(44.99)}{0.02} = \frac{0.006981317290}{0.02} = 0.03490658645. \]

No matter how you do it, the answer to 4 decimal places is 0.0349.

b) Use this information and the microscope equation to estimate \(f(50) \).

By the microscope equation \(f(50) \approx f(45) + 5f'(45) = 1 + 5(0.0349) = 1.1745 \). [FWIW, the actual value of \(f(50) \) turns out to be 1.19175]

3) Suppose that \(f(x) \) is a differentiable function with \(f(2) = -3 \) and \(f'(2) = 7 \).

a) Find an equation for the line tangent to \(y = f(x) \) at \((2, -3)\).

Since the slope is 7, point-slope form says that \(y + 3 = 7(x - 2) \), or \(y = 7(x - 2) - 3 \).

b) Estimate the values of \(f(2.05) \) and \(f(1.9) \).

\[f(2.05) \approx -3 + 7(0.05) = -2.65. \quad f(1.9) \approx -3 + 7(-0.1) = -3.7. \]

4) The following model is NOT the SIR model, but it uses the same sort of reasoning as the SIR model. It’s up to you to provide the details.

A hospital is treating patients who have a particular non-fatal disease. On average, patients spend 8 days in the hospital before being released. Let \(P(t) \) be the number of patients in the hospital at time \(t \), and let \(R(t) \) be the number of patients who have been released. Every day, 20 new patients are admitted to the hospital.

a) Write down a set of rate equations for \(P \) and \(R \). Explain your reasoning!! What does each term in the rate equation represent?

Since the disease runs for 8 days (on average), we expect 1/8 of the patients to recover on any given day. So \(R' = (1/8)P \). Meanwhile, \(P \) is increasing by 20 new patients and decreasing by \(P/8 \), for a total of:

\[P' = 20 - (P/8); \quad R' = P/8. \]

b) If there are 100 patients in the hospital at a particular time, is the number of patients increasing or decreasing? What if there are 200 patients?

When \(P = 100 \), \(P' = 20 - 100/8 = 7.5 > 0 \), so the number of patients is increasing. When \(P = 200 \), \(P' = 20 - 200/8 = -5 \), so \(P \) is decreasing.
5) a) Find the derivative of the function \(f(t) = t^3 - 3t + 2 \). You may use the formulas from Section 3.5.

The derivative of \(t^3 \) is \(3t^2 \), the derivative of \(-3t\) is \(-3\), and the derivative of 2 is 0, so the derivative of \(t^3 - 3t + 2 \) is \(3t^2 - 3 = 3(t^2 - 1) \).

b) The position of a particle is given by \(x(t) = t^3 - 3t + 2 \), where \(t \) is measured in seconds and \(x \) is measured in feet. How fast is the particle moving at time \(t = 2 \)? Is it moving forwards or backwards?

When \(t = 2 \), \(x' = 3(2)^2 - 3 = 9 \), so the particle is moving forwards at a rate of 9 feet/second.

c) At what time(s) is the particle’s velocity equal to zero?

Setting \(x' = 0 \) gives \(t^2 - 1 = 0 \), hence \(t = \pm 1 \).