1. Related rates.

Consider the curve \(y^2 = x^3 + 1, \ y \geq 0 \).

a) Find the slope of the line that is tangent to the curve at the point (2,3).

Take the derivative of the equation with respect to \(x \): \(2yy' = 3x^2 \), so \(y' = 3x^2/(2y) = 12/6 = 2 \).

b) A particle is moving along the curve. Its \(x \)-coordinate is increasing at a rate of 10 units/second. How fast is \(y \) changing when \((x,y) = (2,3) \)?

There are two reasonably easy solutions. One is to use the result from (a): \(dy/dt = (dy/dx)(dx/dt) = 2(10) = 20 \) units/second.

The other method is to start from scratch, and take the derivative of the equation with respect to \(t \):

\[
2y \frac{dy}{dt} = 3x^2 \frac{dx}{dt}.
\]

Plugging in values of \(x, y \) and \(dx/dt \) gives \(6(dy/dt) = 120 \), so \(dy/dt = 20 \), as before.

2. L'Hopital's Rule

Evaluate the following limits:

a) \(\lim_{x \to \infty} \frac{15x^2 - 9}{x^3 + 3x^2 + 5} = \lim_{x \to \infty} \frac{30x}{3x^2 + 6x} = \lim_{x \to \infty} \frac{30}{6x} = 0 \).

b) \(\lim_{x \to 3} \frac{x^2 - 9}{x - 3} = \lim_{x \to 3} \frac{2x}{1} = 6 \).

c) \(\lim_{x \to 2} \frac{\ln(x) - \ln(2)}{x - 2} = \lim_{x \to 2} \frac{1/x}{1} = \frac{1}{2} \).

d) \(\lim_{x \to 0} \frac{e^x - 1}{x^2 + 1} = 0 \). L'Hopital’s rule does not apply here.

3. Elasticity of Demand

The demand \(x \) for a new toy depends on its price \(p \) via the demand equation

\(x = 1000e^{-p} \).

a) Compute the elasticity of demand \(E(p) \) as a function of \(p \).
\[E(p) = \frac{p \frac{dx}{dp}}{x} = \frac{p(-1000e^{-p})}{1000e^{-p}} = -p. \]

b) For what values of \(p \) is the demand elastic? For what values of \(p \) is the demand inelastic?

When \(p > 1 \), \(E < -1 \) and the system is elastic. [Under these circumstances we should lower the price to increase revenue.]

When \(p < 1 \), \(E > -1 \) and the system is inelastic. [To raise revenue, raise the price].

c) What value of \(p \) will maximize revenue?

\[p = 1. \]

Problem 4. Horse sense

For the first two years of life, a pony’s height \(H(t) \) grows at a rate

\[H'(t) = 15 - 3t^2, \]

(where height is measured in inches and time in years). At age 1, the pony is 45 inches tall.

a) How tall was the pony at birth?

\[H(t) = \int H'(t) \, dt = \int (15 - 3t^2) \, dt = 15t - t^3 + C. \]

To evaluate the constant, use the fact that \(H(1) = 45 \), so \(45 = 15 - 1 + C \), so \(C = 31 \). Now plug back in to get

\[H(t) = 15t - t^3 + 31. \]

So when \(t \) was zero, \(H \) was 31.

b) How tall will the pony be at age 2?

\[H(2) = 15(2) - 2^3 + 31 = 53 \text{ inches}. \]

Problem 5. Indefinite integrals.

Evaluate the following integrals:

a) \[\int (2x + e^x) \, dx = x^2 + e^x + C \]

b) \[\int xe^{x^2} \, dx = \frac{1}{2}e^{x^2} + C. \] (Integrate by substitution with \(u = x^2 \).)
c) \[\int \frac{\ln(x)}{x} \, dx = \frac{(\ln(x))^2}{2} + C. \] (Integrate by substitution with \(u = \ln(x) \).)

d) \[\int (2x + 1)^4 \, dx = \frac{(2x + 1)^5}{10} + C. \] (Integrate by substitution with \(u = 2x + 1 \).)

Problem 6. Area under a curve.

We are interested (OK, OK, your instructor is interested) in finding the area under the curve \(y = 2x^2 + 1 \) between \(x = 1 \) and \(x = 4 \).

a) Estimate this area using 3 rectangles. Your final answer should be an explicit number, like 13 or 152.

Each rectangle has width \((4-1)/3 = 1\). The three rectangles have height \(f(2), f(3) \) and \(f(4) \), so the estimated total area is \(f(2) + f(3) + f(4) = 9 + 19 + 33 = 61 \). [If you used the function values at 1, 2 and 3 instead of 2, 3, and 4, I gave full credit. The answer then would be 31]

b) Estimate the area using \(N \) rectangles. You can leave your answer as a sum, like \(\sum_{k=1}^{N} 4(\ln(N) - 3)/N \) (no, that’s not the right answer). Everything in the sum needs to be clearly defined, but **YOU DO NOT NEED TO SIMPLIFY OR EVALUATE THE SUM.**

\(\Delta x = (4 - 1)/N = 3/N \) and \(a = 1 \), so \(x_k = a + k\Delta x = 1 + \frac{3k}{N} \). Thus \(f(x_k) = 2(1 + \frac{3k}{N})^2 + 1 \), and our estimated area, \(\sum_{k=1}^{N} f(x_k)\Delta x \), works out to

\[\sum_{k=1}^{N} \left(2 \left(1 + \frac{3k}{N} \right)^2 + 1 \right) \frac{3}{N} \]