Problem 1: a) Suppose that X is an n-dimensional manifold, x is a point on X, and $f^1, \ldots, f^{n-1} : X \rightarrow \mathbb{R}$ are smooth functions such that the differentials $df^1_x, \ldots, df^{n-1}_x$ are linearly independent at x. Prove there is a function $f^n : X \rightarrow \mathbb{R}$ such that f^1, \ldots, f^n is a local coordinate system in a neighborhood of x.

We must find a function f^n such that df^n_x is linearly independent of $df^1_x, \ldots, df^{n-1}_x$, since in that case $d\tilde{f}_x$ is an invertible matrix, and by the inverse function theorem f is a local diffeomorphism, and the functions f^1, \ldots, f^n serve as local coordinates.

Finding f^n is easy if $X = \mathbb{R}^n$. Just pick a vector v that is linearly independent of $df^1_x, \ldots, df^{n-1}_x$, and let $f^n(x) = v \cdot x$. If X is a general n-manifold, with a local coordinates $y_1, \ldots, y_n \rightarrow X$, apply the same construction to the y's. That is, let f^n be a linear function of the y's, obtained by taking the inner product with a vector that is linearly independent of the existing df's, expressed in the y coordinates.

Problem 2: a) Suppose $f : X \rightarrow Y$ is a smooth map from a compact manifold X to a connected manifold Y. Assume that df_x is invertible for all $x \in X$. Prove that f is surjective.

Actually, this is worded badly. One has to assume that X is nonempty! Furthermore, the proof is different in dimension 0 from positive dimension.

If X is 0-dimensional, then so is Y, and since Y is connected, Y is a single point, so f is onto.

If $dimX > 0$, then the inverse function theorem says that f is a local diffeomorphism. This implies that the image of f is open, since each point in the image has a neighborhood that is diffeomorphic to a neighborhood in X. However, X is compact, so $f(X)$ is compact, so $f(X)$ is closed. Since $f(X)$ is nonempty and both open and closed, and since Y is connected, $f(X)$ is all of Y.

b) Find a counterexample if X is not compact.

Let f be the inclusion of the interval $X = (0, 1)$ in the real line Y.

Problem 3: Let X be a smooth manifold and let $f : X \rightarrow \mathbb{R}^3$ be a smooth map.

a) Is there necessarily a point $z \in \mathbb{R}^3$ such that $f^{-1}(x)$ is a smooth submanifold of X?

By Sard’s theorem, almost every point in \mathbb{R}^3 is a regular value of f, and the preimage of a regular value is a smooth submanifold of X.

b) Is there necessarily a vertical line ℓ in \mathbb{R}^3 such that $f^{-1}(\ell)$ is a smooth submanifold of X?

Yes. Let $\pi : \mathbb{R}^3 \rightarrow \mathbb{R}^2$ be the projection $\pi(x, y, z) = (x, y)$ and let $g = \pi \circ f$. Then by
Sard, almost every point in \mathbb{R}^2 is a regular value of g. Pick such a regular value p, and let $\ell = \pi^{-1}(p)$. Then $f^{-1}(\ell) = g^{-1}(p)$ is a smooth submanifold of X.

Note that Sard’s theorem does NOT imply that there is a line of regular values of f, only that there exists a regular value of g, which is all we need to show that $f^{-1}(\ell)$ is a smooth submanifold.

Problem 4:

a) Suppose we have the usual situation for intersection theory (X compact, Z closed submanifold of Y, and $\dim(X) + \dim(Z) = \dim(Y)$) and that $f : X \to Y$ is homotopic to a constant map. Show that $I_2(f, Z) = 0$.

Again, we need the dimension of X to be positive. First we show that if f is homotopic to a constant map, then it is homotopic to a constant map that misses Z. Since X has dimension greater than zero, Z had dimension less than Y, so every point $p \in Z$ is in the same path-component of Y as a point $q \notin Z$. If $\gamma(t)$ is a path from $\gamma(0) = p$ to $\gamma(1) = q$, then $F : X \times I \to Y, F(x, t) = \gamma(t)$ is a homotopy from a constant map with image p to a constant map with image q.

However, a map that misses Z is automatically transversal to Z, and has intersection number zero. Since mod-2 intersection number is a homotopy invariant, our original map f must have $I_2(f, Z) = 0$.

b) Suppose that $Y = \mathbb{R}^N$, that we have the usual setup for intersection theory, and that $f : X \to Y$ is any smooth map. Show that $I_2(f, Z) = 0$.

This is a corollary of part (a). Since \mathbb{R}^N is contractible, every map $X \to Y$ is homotopic to the zero map. (For instance, take $F(x, t) = (1 - t)f(x)$.)

Problem 5:

Prove that there exists a complex number z such that $z^7 + \cos(|z|^2)(35z^3 + iz^2 - 894) = 0$. Don’t handwave! If you claim that two maps are homotopic, show the homotopy explicitly.

Let $f(z) = z^7 + \cos(|z|^2)(35z^3 + iz^2 - 894) = 0$, and let $u(z) = f(z)/|f(z)|$, except where $f(z) = 0$. Now let W be the closed ball of radius $r_n = \sqrt{(n + (1/2))\pi}$, where n is any non-negative integer. On the boundary of W, $f(z)$ is just z^7, since $\cos(|z|^2) = 0$, so the degree of u, as a map from the circle of radius r_n to S^1, is $7 = 1$ (mod 2). [Actually, I had intended you to show that f was homotopic to z^7, and hence had the same winding number, but this trick makes that unnecessary.] By the Extension Theorem, this means that u cannot be extended to a map from all of W to S^1, and hence that f must have a zero somewhere on W.
