FINAL EXAM, M340L, F94 — Norton's section

Directions: Do all problems and show your work clearly. Put a box around your final answer for each problem. You must show your work and justify your answers to receive credit. No books, notes, or calculators are permitted, except one 8.5 x 11 sheet of notepaper with your own notes. Use the space provided; continue on the back if you need more space.

There are ten questions, each worth 10 points; 100 points total.

1. Use row reduction to find all solutions of the following system. Express your answer in vector parametric form.

$$2x + 2z = 4$$
$$y + 2z + w = 4$$
$$x + z + w = 4.$$

- 2. Let W be the subspace of \mathbb{R}^4 spanned by the vectors (1,0,1,0),(2,1,-1,0), and (1,2,-5,0).
- (a) Find a basis for W.
- (b) What is the dimension of W?
- (c) Let $\mathbf{x} = (6, 2, 0, 0)$. Find $[\mathbf{x}]_{\mathcal{B}}$, where \mathcal{B} is the basis found in part (a).
- 3. Let

$$A = \begin{bmatrix} 10 & 20 & 30 \\ 6 & 12 & 24 \\ 12 & 15 & 1994 \end{bmatrix}.$$

- (a) Find the determinant of A.
- (b) Find the determinant of 2A.
- 4. Let

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}.$$

- (a) Find A^{-1} .
- (b) Use your answer to (a) to solve $A\mathbf{x} = (1, 2, 5)$ for \mathbf{x} .
- 5. Let

$$A = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 2 & 1 & -1 & 0 \\ 1 & 2 & -5 & 0 \end{bmatrix}.$$

- (a) Find bases for the row space, column space, and null space of A.
- (b) Define rank. What is the rank of A?
- 6. Let A be an $n \times n$ matrix. List at least ten different conditions that are all equivalent to the statement "A is invertible". (Do not include this statement itself as one of the ten.)

(Scoring: 1 point each; 10 points maximum.)

7. Let

$$A = \begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix}.$$

- (a) Find the eigenvalues of A.
- (b) For each eigenvalue, find a corresponding eigenvector.
- (c) Find a diagonal matrix D and an invertible matrix P such that $A = PDP^{-1}$. (Check your answer.)
- 8. Consider the system

$$x + 4y = 1$$
$$x + y = 2$$

$$x + y = 3$$
.

- (a) Demonstrate that this system is inconsistent.
- (b) Write down the corresponding normal equations for this system.
- (c) Find the best solution(s) in the sense of least squares.
- (d) Compute the least squares error for the solutions found in part (c).
- 9. Let C_k denote the number of cats in central park at the end of k months, and M_k the corresponding number of mice. The populations of cats and mice have been determined to evolve according to the equations

$$C_{k+1} = .2C_k + .9M_k$$

$$M_{k+1} = -.6C_k + 2.3M_k.$$

It is known that the eigenvalues of the matrix

$$\begin{bmatrix} .2 & .9 \\ -.6 & 2.3 \end{bmatrix}$$

are 2 and 0.5, with corresponding eigenvectors (1,2) and (3,1), respectively.

- (a) Suppose that initially there are 20 cats and 100 mice. Find a formula, in terms of k, for the number of cats C_k after k months.
- (b) Some time later a survey finds that there are 200,000 cats in the park. Approximately how many cats will there be one month later? Justify.
 - 10. True or False. (If true, justify; if false, provide a counterexample and explanation.)
 - (a) Every 2×2 matrix can be diagonalized.
 - (b) If A and B have the same eigenvalues, then A and B are similar.
 - (c) If $A^2 = 0$, then A = 0.
- (d) If A is a 5×7 matrix and Nul(A) has dimension three, then the system $A\mathbf{x} = \mathbf{b}$ will be inconsistent for certain vectors \mathbf{b} .