1) (15 points) Consider the vectors \(\begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix} \) and \(\begin{pmatrix} 3 \\ 1 \\ 5 \end{pmatrix} \) in \(\mathbb{R}^3 \). Are these vectors linearly independent? Do they span \(\mathbb{R}^3 \)? Do they form a basis for \(\mathbb{R}^3 \)?

2. (15 points) Let \(V = \mathbb{R}_2[t] \) be the space of quadratic polynomials in a variable \(t \) and consider the linear transformation \(L(p) = (t + 1)p'(t) \) from \(V \) to itself, where \(p'(t) \) is the derivative of \(p(t) \). Find the matrix of this linear transformation with respect to the (standard) basis \(\{1, t, t^2\} \).

3. Let \(A = \begin{pmatrix} 1 & -1 & -1 & 1 & 8 \\ 1 & 2 & 8 & 3 & 7 \\ 1 & 2 & 8 & -2 & -28 \\ 1 & 5 & 17 & 0 & -29 \end{pmatrix} \)

 a) Find a basis for the null space of \(A \).

 b) Find a basis for the column space of \(A \).

4. a) In \(\mathbb{R}^2 \), let \(B = \left\{ \begin{pmatrix} 3 \\ 5 \end{pmatrix}, \begin{pmatrix} 5 \\ 8 \end{pmatrix} \right\} \) be a basis, and let \(x = \begin{pmatrix} 1 \\ -2 \end{pmatrix} \). Let \(E \) be the standard basis. Compute the change-of-basis matrices \(P_{EB} \) and \(P_{BE} \) and compute the coordinates of \(x \) in the \(B \) basis.

 b) In \(\mathbb{R}_1[t] \), let \(D = \{3 + 5t, 5 + 8t\} \) and let \(p(t) = 1 + t \). Compute \([p]_D \).

5. a) Find the characteristic polynomial of \(\begin{pmatrix} 3 & 2 \\ 5 & 1 \end{pmatrix} \). (You do not have to compute the eigenvalues or eigenvectors).

 b) Find the eigenvalues of \(\begin{pmatrix} 1 & -4 \\ 1 & 1 \end{pmatrix} \). (You do not have to find the eigenvectors).

 c) \(\lambda = 2 \) is one of the eigenvalues of \(\begin{pmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{pmatrix} \). Find a basis for the corresponding eigenspace.