1. (10 points) The matrix $A=\left(\begin{array}{cccccc}1 & 1 & 3 & 1 & 7 & 7 \\ 1 & 2 & 5 & 3 & 20 & 16 \\ 2 & 4 & 10 & 7 & 45 & 36\end{array}\right)$ is row-equivalent to $\left(\begin{array}{cccccc}1 & 0 & 1 & 0 & -1 & 2 \\ 0 & 1 & 2 & 0 & 3 & 1 \\ 0 & 0 & 0 & 1 & 5 & 4\end{array}\right)$.
a) Are the vectors $\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 4\end{array}\right)$, and $\left(\begin{array}{c}3 \\ 5 \\ 10\end{array}\right)$ linearly independent?
b) Do the vectors $\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 4\end{array}\right),\left(\begin{array}{c}3 \\ 5 \\ 10\end{array}\right)\left(\begin{array}{l}1 \\ 3 \\ 7\end{array}\right),\left(\begin{array}{c}7 \\ 20 \\ 45\end{array}\right)$ and $\left(\begin{array}{c}7 \\ 16 \\ 36\end{array}\right)$ span \mathbf{R}^{3} ?
c) Find bases for the column space of A, for the row space of A, and for the null space of A.
$2(15$ points $)$ Let $\mathcal{B}=\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$ be a basis for \mathbf{R}^{3}, and let \mathcal{E} be the standard basis.
a. Compute the change-of-basis matrices $P_{\mathcal{E B}}$ and $P_{\mathcal{B E}}$.
b. If $\mathbf{x}=\left(\begin{array}{l}3 \\ 2 \\ 5\end{array}\right)$, what is $[\mathbf{x}]_{\mathcal{B}}$?
c. Let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be a linear transformation given by the formula $T(\mathbf{x})=\left(\begin{array}{c}3 x_{1}+2 x_{2}+x_{3} \\ 2 x_{1}-x_{3} \\ x_{2}\end{array}\right)$. Find the standard matrix of T (relative to the standard basis).
d. Find the matrix of T relative to the \mathcal{B} basis.
2. (12 points)

For each of these square matrices, either find the inverse or explain why the inverse does not exist.
(a) $\left(\begin{array}{ll}3 & 1 \\ 4 & 2\end{array}\right)$
b) $\left(\begin{array}{lll}1 & 3 & 5 \\ 2 & 1 & 4 \\ 3 & 4 & 9\end{array}\right)$
c) $\left(\begin{array}{ccc}0 & 0 & 1 \\ 0 & -1 & 2 \\ 1 & 4 & 5\end{array}\right)$
4. (10 points) (a) Write down the characteristic equation of the matrix $A=\left(\begin{array}{ll}3 & 7 \\ 1 & 4\end{array}\right)$. You do not need to find the eigenvalues or eigenvectors.
b) The eigenvalues of $B=\left(\begin{array}{ccc}1 & 2 & 2 \\ 2 & -2 & 1 \\ 2 & 1 & -2\end{array}\right)$ are 3 and -3 . Find bases for E_{3} and E_{-3}. Is B diagonalizable?
5. (15 points) The matrix $\left(\begin{array}{cc}3 & 3 \\ 3 & -5\end{array}\right)$ has eigenvalues $\lambda_{1}=4$ and $\lambda_{2}=-6$ and corresponding eigenvectors $\mathbf{b}_{1}=\binom{3}{1}$ and $\mathbf{b}_{2}=\binom{1}{-3}$.
a. Find the coordinates of $\binom{13}{1}$ in the $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ basis.
b. If $\mathbf{x}(n+1)=A \mathbf{x}(n)$ and $\mathbf{x}(0)=\binom{13}{1}$, find $\mathbf{x}(n)$ for all n. What is the dominant eigenvector (and eigenvalue) for this problem?
c. Suppose instead that $\frac{d \mathbf{x}}{d t}=A \mathbf{x}$. Find the general solution to this system of differential equations. What is the dominant eigenvector (and eigenvalue)?
6. (8 points) Let V be the subspace of \mathbf{R}^{4} spanned by the three vectors $\mathbf{x}_{1}=\left(\begin{array}{c}1 \\ 0 \\ 1 \\ -2\end{array}\right), \mathbf{x}_{2}=\left(\begin{array}{c}2 \\ 1 \\ 2 \\ -1\end{array}\right), \mathbf{x}_{3}=\left(\begin{array}{l}5 \\ 2 \\ 1 \\ 0\end{array}\right)$. Find an orthogonal basis for V.
(10 points) 7a. Find all least-square solutions to $\left(\begin{array}{ll}1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4\end{array}\right) \mathbf{x}=\left(\begin{array}{c}7 \\ 5 \\ 7 \\ 13\end{array}\right)$.
b. Let W be the plane in \mathbf{R}^{4} spanned by $\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)$ and $\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right)$. Find the point in W closest to $\left(\begin{array}{c}7 \\ 5 \\ 7 \\ 13\end{array}\right)$.
8. True/False (20 points, 2 pages):
a. If the columns of a square matrix are linearly independent, then the matrix is invertible.
b. If the columns of a square matrix are linearly dependent, then 0 is an eigenvalue of that matrix.
c. The product $A \mathrm{x}$ of a matrix A with a vector x is a linear combination of the columns of A.
d. Let A and B be matrices such that the product $A B$ makes sense. The null space of B is a subspace of the null space of $A B$.
e. The rank of a matrix is the number of linearly independent rows it has.
f. If A is a 3×4 matrix and $\mathbf{b} \in \mathbf{R}^{3}$, then $A \mathbf{x}=\mathbf{b}$ has infinitely many solutions.
g. If W is a subspace of \mathbf{R}^{n} and $\mathbf{x} \in \mathbf{R}^{n}$, then there is exactly one way to write \mathbf{x} as the sum of a vector in W and a vector in W^{\perp}.
h. For problems of the form $\mathbf{x}(n+1)=A \mathbf{x}(n)$, the dominant eigenvalue of A is the eigenvalue with greatest real part.
i. The geometric multiplicity of an eigenvalue is at least one and is at most the algebraic multiplicity.
j. The system of equations $A \mathbf{x}=\mathbf{b}$ always has a least-squares solution.

