M340L First Midterm Exam, February 18, 2010
1.Let $A=\left(\begin{array}{cccc}1 & 2 & 5 & 0 \\ 2 & 1 & 7 & 6 \\ 3 & 3 & 12 & 6\end{array}\right)$.
a) Compute $A_{\text {rref }}$.
b) Find all solutions to $A \mathrm{x}=0$.
c) Find all solutions to $A \mathbf{x}=\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)$.
d) Find all solutions to $A \mathbf{x}=\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)$.
2. Consider the vectors $\mathbf{a}_{1}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right), \mathbf{a}_{2}=\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right), \mathbf{a}_{3}=\left(\begin{array}{c}5 \\ 7 \\ 12\end{array}\right), \mathbf{a}_{4}=\left(\begin{array}{l}0 \\ 6 \\ 6\end{array}\right)$, $\mathbf{u}=\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)$, and $\mathbf{v}=\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)$.
a) Are the vectors $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}\right\}$ linearly independent? If not, write the zero vector as a nontrivial linear combination of $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}\right\}$.
b) Is \mathbf{u} in the span of $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}\right\}$? If so, write \mathbf{u} as a linear combination of $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}\right\}$.
c) Is \mathbf{v} in the span of $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}\right\}$? If so, write \mathbf{v} as a linear combination of $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}\right\}$.
3. (a) Let $T_{1}: R^{2} \rightarrow R^{2}$ be a linear transformation that first rotates vectors 90 degrees counterclockwise and then reflects them across the vertical axis. Find the (standard) matrix of T_{1}. Is $T_{1} 1-1$? If T_{1} onto?
(b) Let $T_{2}: R^{2} \rightarrow R^{3}$ be given by the formula $T_{2}\binom{x_{1}}{x_{2}}=\left(\begin{array}{c}3 x_{1}-x_{2} \\ 0 \\ 9 x_{1}-3 x_{2}\end{array}\right)$.

Find the (standard) matrix of T_{2}. Is $T_{2} 1-1$? If T_{2} onto?
4. (a) Does $\left(\begin{array}{ll}2 & 3 \\ 6 & 9\end{array}\right)$ have an inverse? If so, find it.
(b) Does $\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6\end{array}\right)$ have an inverse? If so, find it.
5. True/false. Just mark each statement with a T (or TRUE) or an F (or FALSE). You do not need to justify your answers, and partial credit will not be given.
a) If A is a left-inverse, then the columns of A are linearly independent.
b) If a 3×5 matrix A has rank 3 , then the linear transformation $T(\mathbf{x})=A \mathbf{x}$ is onto.
c) If $A \mathbf{x}=0$ has infinitely many solutions, then $A \mathbf{x}=\mathbf{b}$ has infinitely many solutions.
d) If $T(\mathbf{x})=A \mathbf{x}$, then the third column of A (assuming A has at least three columns, of course) is $T\left(\mathbf{e}_{3}\right)$.
e) If A is a 3×5 matrix, then the columns of A are linearly dependent.
f) If A and B are row-equivalent matrices, then the equations $A \mathbf{x}=\mathbf{b}$ and $B \mathbf{x}=\mathbf{b}$ have the same solutions.
g) The columns of $\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 64 \\ 1 & 5 & 25 & 125\end{array}\right)$ span R^{5}.
h) If four vectors in R^{4} are linearly independent, then they span R^{4}.
i) If a square matrix has a right-inverse, then the columns are linearly independent.
j) If A and B are 2×2 matrices, then $A B=B A$.

