M340L Second Midterm Exam, April 8, 2010

1. The matrices
$$A = \begin{pmatrix} 1 & 1 & 1 & 1 & 12 \\ 1 & 0 & -2 & -1 & -3 \\ 0 & 2 & 6 & 5 & 37 \\ 2 & 1 & -1 & 2 & 23 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 0 & -2 & 0 & 4 \\ 0 & 1 & 3 & 0 & 1 \\ 0 & 0 & 0 & 1 & 7 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$

are row-equivalent.

- a) Find a basis for Col(A). What is dim(Col(A))?
- b) Find a basis for Nul(A). What is dim(Nul(A))?

d) $M_{2,2}$ is the space of 2×2 matrices. Let V be the subspace of $M_{2,2}$ spanned by $\left\{ \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & -2 \\ 6 & -1 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 5 & 2 \end{pmatrix}, \begin{pmatrix} 12 & -3 \\ 37 & 23 \end{pmatrix} \right\}$. Find a basis for V.

2. On R^3 , let \mathcal{E} be the standard basis and let $\mathcal{B} = \left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 2\\3\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\2 \end{pmatrix} \right\}.$

Let
$$\mathbf{v} = \begin{pmatrix} 5\\ -2\\ 3 \end{pmatrix}$$
.

a) Compute the change-of-basis matrices $P_{\mathcal{EB}}$ and $P_{\mathcal{BE}}$

b) Compute $[\mathbf{v}]_{\mathcal{B}}$.

c) In P_2 , let $C = \{1 + t + t^2, 2 + 3t + t^2, 1 + t + 2t^2\}$, and let $\mathbf{w} = 5 - 2t + 3t^2$. Find $[\mathbf{w}]_{\mathcal{C}}$. (Justify your answer!)

3. Let
$$A = \begin{pmatrix} 6 & 5 \\ -5 & 0 \end{pmatrix}$$
 and let $B = \begin{pmatrix} 2 & 1 & -1 \\ -1 & 4 & -1 \\ 3 & -1 & 0 \end{pmatrix}$.

a) Find the characteristic equation of A.

(b) Find the eigenvalues of A (you do not need to find the eigenvectors).

c) The eigenvalues of B are 1, 2 and 3. Find the corresponding eigenvectors. (Note: you may get some *simple* fractions in your calculations, but if you get any truly ugly denominators, you've made a mistake.)

4. a) Find a 2×2 matrix with eigenvalues 1 and 3, and with corresponding eigenvectors $\begin{pmatrix} 2\\ 3 \end{pmatrix}$ and $\begin{pmatrix} 3\\ 5 \end{pmatrix}$. (b) Is $\begin{pmatrix} 3 & -1 \\ 4 & -1 \end{pmatrix}$ diagonalizable? Why or why not?

5. True/false. Just mark each statement with a T (or TRUE) or an F (or FALSE). You do not need to justify your answers, and partial credit will not be given.

a) If a square matrix has determinant zero, then its null space is at least 1-dimensional.

b) The plane $x_1 + 2x_2 + 3x_3 = 6$ is a subspace of \mathbb{R}^3 .

c) If an $m \times n$ matrix has rank k, then its null space has dimension m - k.

d) If A is a 4×7 matrix, then the dimension of Col(A) equals the dimension of Row(A).

e) If \mathcal{B}, \mathcal{C} and \mathcal{D} are bases for a vector space V, then $P_{\mathcal{BD}} = P_{\mathcal{CD}}P_{\mathcal{BC}}$.

f) The geometric multiplicity of an eigenvalue is at least as big as the algebraic multiplicity of that eigenvalue.

g) If the characteristic equation of a square matrix A is $(\lambda - 1)^3(\lambda + 2) = 0$, then $\lambda = 1$ is an eigenvalue with algebraic multiplicity 3.

h) If the characteristic equation of a real matrix A has complex roots, then there is no basis of \mathbb{R}^n consisting of eigenvectors of A.

i) If \mathcal{B} is a basis consisting of eigenvectors of A, then $[A]_{\mathcal{B}}$ is diagonal.

j) If A is a 5×5 matrix with eigenvalues 11, 25, 32 and 47, and if the geometric multiplicity of $\lambda = 11$ is 2, then A is diagonalizable.