M340L Second Midterm Exam, April 8, 2010

1. The matrices $A=\left(\begin{array}{ccccc}1 & 1 & 1 & 1 & 12 \\ 1 & 0 & -2 & -1 & -3 \\ 0 & 2 & 6 & 5 & 37 \\ 2 & 1 & -1 & 2 & 23\end{array}\right)$ and $B=\left(\begin{array}{ccccc}1 & 0 & -2 & 0 & 4 \\ 0 & 1 & 3 & 0 & 1 \\ 0 & 0 & 0 & 1 & 7 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$ are row-equivalent.
a) Find a basis for $\operatorname{Col}(A)$. What is $\operatorname{dim}(\operatorname{Col}(A))$?
b) Find a basis for $\operatorname{Nul}(A)$. What is $\operatorname{dim}(\operatorname{Nul}(A))$?
c) Find a basis for $\operatorname{Row}(A)$. What is $\operatorname{dim}(\operatorname{Row}(A))$?
d) $M_{2,2}$ is the space of 2×2 matrices. Let V be the subspace of $M_{2,2}$ spanned by $\left\{\left(\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right),\left(\begin{array}{ll}1 & -2 \\ 6 & -1\end{array}\right),\left(\begin{array}{cc}1 & -1 \\ 5 & 2\end{array}\right),\left(\begin{array}{cc}12 & -3 \\ 37 & 23\end{array}\right)\right\}$. Find a basis for V.
2. On R^{3}, let \mathcal{E} be the standard basis and let $\mathcal{B}=\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)\right\}$. Let $\mathbf{v}=\left(\begin{array}{c}5 \\ -2 \\ 3\end{array}\right)$.
a) Compute the change-of-basis matrices $P_{\mathcal{E B}}$ and $P_{\mathcal{B E}}$
b) Compute $[\mathbf{v}]_{\mathcal{B}}$.
c) In P_{2}, let $\mathcal{C}=\left\{1+t+t^{2}, 2+3 t+t^{2}, 1+t+2 t^{2}\right\}$, and let $\mathbf{w}=5-2 t+3 t^{2}$. Find $[\mathbf{w}]_{\mathcal{C}}$. (Justify your answer!)
3. Let $A=\left(\begin{array}{cc}6 & 5 \\ -5 & 0\end{array}\right)$ and let $B=\left(\begin{array}{ccc}2 & 1 & -1 \\ -1 & 4 & -1 \\ 3 & -1 & 0\end{array}\right)$.
a) Find the characteristic equation of A.
(b) Find the eigenvalues of A (you do not need to find the eigenvectors).
c) The eigenvalues of B are 1, 2 and 3. Find the corresponding eigenvectors. (Note: you may get some simple fractions in your calculations, but if you get any truly ugly denominators, you've made a mistake.)
4. a) Find a 2×2 matrix with eigenvalues 1 and 3 , and with corresponding eigenvectors $\binom{2}{3}$ and $\binom{3}{5}$.
(b) Is $\left(\begin{array}{ll}3 & -1 \\ 4 & -1\end{array}\right)$ diagonalizable? Why or why not?
5. True/false. Just mark each statement with a T (or TRUE) or an F (or FALSE). You do not need to justify your answers, and partial credit will not be given.
a) If a square matrix has determinant zero, then its null space is at least 1-dimensional.
b) The plane $x_{1}+2 x_{2}+3 x_{3}=6$ is a subspace of R^{3}.
c) If an $m \times n$ matrix has rank k, then its null space has dimension $m-k$.
d) If A is a 4×7 matrix, then the dimension of $\operatorname{Col}(A)$ equals the dimension of $\operatorname{Row}(A)$.
e) If \mathcal{B}, \mathcal{C} and \mathcal{D} are bases for a vector space V, then $P_{\mathcal{B D}}=P_{\mathcal{C D}} P_{\mathcal{B C}}$.
f) The geometric multiplicity of an eigenvalue is at least as big as the algebraic multiplicity of that eigenvalue.
g) If the characteristic equation of a square matrix A is $(\lambda-1)^{3}(\lambda+2)=0$, then $\lambda=1$ is an eigenvalue with algebraic multiplicity 3 .
h) If the characteristic equation of a real matrix A has complex roots, then there is no basis of R^{n} consisting of eigenvectors of A.
i) If \mathcal{B} is a basis consisting of eigenvectors of A, then $[A]_{\mathcal{B}}$ is diagonal.
j) If A is a 5×5 matrix with eigenvalues $11,25,32$ and 47 , and if the geometric multiplicity of $\lambda=11$ is 2 , then A is diagonalizable.
