M340L First Midterm Exam Solutions, February 18, 2010
1.Let $A=\left(\begin{array}{cccc}1 & 2 & 5 & 0 \\ 2 & 1 & 7 & 6 \\ 3 & 3 & 12 & 6\end{array}\right)$.
a) Compute $A_{\text {rref }}$.

$$
A_{\text {rref }}=\left(\begin{array}{cccc}
1 & 0 & 3 & 4 \\
0 & 1 & 1 & -2 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

b) Find all solutions to $A \mathbf{x}=0$.

The equations become $z_{1}=-3 x_{3}-4 x_{4}, x_{2}=-x_{3}+2 x_{4}$, with $x_{3}=x_{3}$ and $x_{4}=x_{4}$. In other words $\mathbf{x}=x_{3}\left(\begin{array}{c}-3 \\ -1 \\ 1 \\ 0\end{array}\right)+x_{4}\left(\begin{array}{c}-4 \\ 2 \\ 0 \\ 1\end{array}\right)$, where x_{3} and x_{4} are arbitrary.
c) Find all solutions to $A \mathbf{x}=\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)$.

This is similar, only with an extra term on the right-hand side. Rowreducing $[A \mid \mathbf{b}]$ gives $\left(\begin{array}{cccc|c}1 & 0 & 3 & 4 & -1 \\ 0 & 1 & 1 & -2 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$. This means $z_{1}=-3 x_{3}-$ $4 x_{4}-1, x_{2}=-x_{3}+2 x_{4}+1$, with $x_{3}=x_{3}$ and $x_{4}=x_{4}$. In other words $\mathbf{x}=x_{3}\left(\begin{array}{c}-3 \\ -1 \\ 1 \\ 0\end{array}\right)+x_{4}\left(\begin{array}{c}-4 \\ 2 \\ 0 \\ 1\end{array}\right)+\left(\begin{array}{c}-1 \\ 1 \\ 0 \\ 0\end{array}\right)$, where x_{3} and x_{4} are arbitrary.
d) Find all solutions to $A \mathbf{x}=\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)$.

Row-reducing $[A \mid \mathbf{b}]$ gives $\left(\begin{array}{cccc:c}1 & 0 & 3 & 4 & -1 \\ 0 & 1 & 1 & -2 & 1 \\ 0 & 0 & 0 & 0 & 1\end{array}\right)$, so there are no solutions.
2. Consider the vectors $\mathbf{a}_{1}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right), \mathbf{a}_{2}=\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right), \mathbf{a}_{3}=\left(\begin{array}{c}5 \\ 7 \\ 12\end{array}\right), \mathbf{a}_{4}=\left(\begin{array}{l}0 \\ 6 \\ 6\end{array}\right)$,
$\mathbf{u}=\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)$, and $\mathbf{v}=\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)$.
a) Are the vectors $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}\right\}$ linearly independent? If not, write the zero vector as a nontrivial linear combination of $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}\right\}$.

This is really the same question as 1 b . The vectors are linearly dependent since there are nontrivial solutions to $A \mathbf{x}=0$. For instance, $-3 \mathbf{a}_{1}-\mathbf{a}_{2}+\mathbf{a}_{3}=$ 0 . Also, $-4 \mathbf{a}_{1}+2 \mathbf{a}_{2}+\mathbf{a}_{4}=0$.
b) Is \mathbf{u} in the span of $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}\right\}$? If so, write \mathbf{u} as a linear combination of $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}\right\}$.

This is the same thing as $1 \mathbf{c} . \mathbf{u}$ is in the span, since there are solutions to $A \mathbf{x}=\mathbf{u}$. In particular, $-\mathbf{a}_{1}+\mathbf{a}_{2}=\mathbf{u}$.
c) Is \mathbf{v} in the span of $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}\right\}$? If so, write \mathbf{v} as a linear combination of $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}\right\}$.

This is the same thing as $1 \mathbf{d} . \mathbf{v}$ is not in the span, as there are no solutions to $A \mathrm{x}=\mathbf{v}$.
3. (a) Let $T_{1}: R^{2} \rightarrow R^{2}$ be a linear transformation that first rotates vectors 90 degrees counterclockwise and then reflects them across the vertical axis. Find the (standard) matrix of T_{1}. Is $T_{1} 1-1$? If T_{1} onto?

Since $T_{1}\left(\mathbf{e}_{1}\right)=\mathbf{e}_{2}$ and $T_{1}\left(\mathbf{e}_{2}\right)=\mathbf{e}_{1}$, the matrix is $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. This has rank 2 , so T_{1} is both 1-1 and onto.
(b) Let $T_{2}: R^{2} \rightarrow R^{3}$ be given by the formula $T_{2}\binom{x_{1}}{x_{2}}=\left(\begin{array}{c}3 x_{1}-x_{2} \\ 0 \\ 9 x_{1}-3 x_{2}\end{array}\right)$.

Find the (standard) matrix of T_{2}. Is $T_{2} 1$-1? If T_{2} onto?
The matrix is $\left(T_{2}\left(\mathbf{e}_{1}\right) \quad T_{2}\left(\mathbf{e}_{2}\right)\right)=\left(\begin{array}{cc}3 & -1 \\ 0 & 0 \\ 9 & -3\end{array}\right)$. This row-reduces to something with only one pivot, so it is neither 1-1 nor onto. (If it had two pivots, it would be 1-1 but not onto.)
4. (a) Does $\left(\begin{array}{ll}2 & 3 \\ 6 & 9\end{array}\right)$ have an inverse? If so, find it.

No. The determinant is zero.
(b) Does $\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6\end{array}\right)$ have an inverse? If so, find it.

Yes. By row-reducing $[A \mid I]$ we get that $A^{-1}=\left(\begin{array}{ccc}3 & -3 & 1 \\ -3 & 5 & -2 \\ 1 & -2 & 1\end{array}\right)$.
5. True/false. Just mark each statement with a T (or TRUE) or an F (or FALSE). You do not need to justify your answers, and partial credit will not be given.
a) If A is a left-inverse, then the columns of A are linearly independent.

TRUE. If $A \mathbf{x}=0$, then $\mathbf{x}=L A \mathbf{x}=L 0=0$.
b) If a 3×5 matrix A has rank 3 , then the linear transformation $T(\mathbf{x})=A \mathbf{x}$ is onto.

TRUE. There is a pivot in each row.
c) If $A \mathbf{x}=0$ has infinitely many solutions, then $A \mathbf{x}=\mathbf{b}$ has infinitely many solutions.

FALSE. There may not be any solutions. (See problem 1d).
d) If $T(\mathbf{x})=A \mathbf{x}$, then the third column of A (assuming A has at least three columns, of course) is $T\left(\mathbf{e}_{3}\right)$.

TRUE. $T\left(\mathbf{e}_{3}\right)=A \mathbf{e}_{3}$ is the third column of A.
e) If A is a 3×5 matrix, then the columns of A are linearly dependent.

TRUE. There's no way for A to have 5 pivots if it only has 3 rows.
f) If A and B are row-equivalent matrices, then the equations $A \mathbf{x}=\mathbf{b}$ and $B \mathbf{x}=\mathbf{b}$ have the same solutions.

FALSE. When converting A to B by row operations, you typically change the right hand side of the equations.
g) The columns of $\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 64 \\ 1 & 5 & 25 & 125\end{array}\right)$ span R^{5}.

FALSE. There are only four vectors, and four vectors can't span R^{5}.
h) If four vectors in R^{4} are linearly independent, then they span R^{4}.

TRUE. For collections of n vectors in R^{n}, linear independence is equiva-
lent to spanning.
i) If a square matrix has a right-inverse, then the columns are linearly independent.

TRUE. If a square matrix has a right-inverse, then it is invertible and has a left-inverse, too.
j) If A and B are 2×2 matrices, then $A B=B A$.

FALSE. Matrices typically do not commute.

