1. Let \(A = \begin{pmatrix} 1 & 3 & -2 \\ 2 & 8 & 0 \\ -1 & 3 & 13 \end{pmatrix} \), and let \(b = \begin{pmatrix} 1 \\ 4 \\ 3 \end{pmatrix} \).

 a) Write \(A \) as a product \(A = LU \) or \(A = PLU \), with \(L \) lower-triangular and \(U \) upper-triangular (and \(P \), if needed, a permutation matrix).

 b) Solve the system of equations \(Ax = b \).

 c) Find \(A^{-1} \). (Yes, \(A \) is invertible.)

2. Consider the vectors \(a_1 = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix} \), \(a_2 = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} \), \(a_3 = \begin{pmatrix} 7 \\ 1 \\ -7 \end{pmatrix} \), and \(v = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \).

 a) Is \(v \) in the span of the vectors \(\{a_1, a_2, a_3\} \)? If so, write \(v \) as a linear combination of \(a_1, a_2 \) and \(a_3 \). If not, explain why not.

 b) Are the vectors \(\{a_1, a_2, a_3\} \) linearly independent? If so, explain why. If not, write one of them as a linear combination of the other two.

 c) Is the matrix \(A = \begin{pmatrix} a_1 & a_2 & a_3 \end{pmatrix} \) invertible? If so, find its inverse. If not, explain why not.

3. (a) Let \(x = \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix} \) and \(y = \begin{pmatrix} 2 \\ -2 \\ -2 \\ -2 \end{pmatrix} \). Find \(\|x\|, \|y\|, \) and \(\|x + y\| \).

 (b) Compute the angle between the vectors \(x \) and \(y \).

4. True/false. Just mark each statement with a T (or TRUE) or an F (or FALSE). You do not need to justify your answers, and partial credit will not be given.

 a) If the vectors \(a_1, a_2, a_3 \) and \(a_4 \) in \(\mathbb{R}^4 \) are linearly independent, then the matrix \(A = \begin{pmatrix} a_1 & a_2 & a_3 & a_4 \end{pmatrix} \) is invertible.

 b) A system of 3 linear equations in 5 variables always has at least one solution.

 c) If \(A \) is a singular square matrix, then there are infinitely many solutions to \(Ax = 0 \).

 d) Suppose \(A \) is a \(3 \times 3 \) that row-reduces to an upper-triangular matrix \(U \)
by the following steps: First subtract 3 times the first row from the second, then add 2 times the first row to the third, then subtract 5 times the second row from the third. Then $A = LU$, where $L = \begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ -2 & 5 & 1 \end{pmatrix}$.

e) If A and B are invertible square matrices of the same size, then AB is invertible and $(AB)^{-1} = A^{-1}B^{-1}$.