1. Areas and volumes. (8 pts) Let R be the region in the $x-y$ plane between the x axis, the curve $y=1 / x$ and the line $x=1$. Let V be the 3 -dimensional solid obtained by rotating R around the x axis.
a) Express the area of R as an improper integral. Does this integral converge? If so, evaluate the integral. If not, explain why it diverges.

The area is $\int_{1}^{\infty} \frac{d x}{x}$, which diverges since $\ln (t)$ goes to ∞ as $t \rightarrow \infty$.
b) Express the volume of V as an improper integral. Does this integral converge? If so, evaluate the integral. If not, explain why it diverges.

$$
V=\int_{1}^{\infty} \pi(1 / x)^{2} d x=\pi \int_{1}^{\infty} \frac{d x}{x^{2}} \text { which converges to } \pi
$$

2. Integrals and limits. (12 pts) Evaluate the following integrals and limits. If an improper integral or a limit does not exist, say "does not exist" or "diverges".
a) $\int_{0}^{1} \frac{d x}{\sqrt{4-x^{2}}}$.

Use the substitution $x=2 \sin (\theta)$ to convert the integral to $\int d \theta=\theta=$ $\sin ^{-1}(x / 2)$. Evaluating at 1 and at 0 gives $\sin (1 / 2)-\sin (0)=\pi / 6$.
b) $\lim _{x \rightarrow 0} \frac{\sin (x)-x \cos (x)}{x^{3}}$.

You can either apply L'Hospital's rule three times or use the Taylor expansion of $\sin (x)$ and $\cos (x)$:

$$
\sin (x)-x \cos (x)=\left(x-x^{3} / 6+\cdots\right)-x\left(1-x^{2} / 2+\cdots\right)=x^{3} / 3+\cdots
$$

Dividing by x^{3} and taking a limit as $x \rightarrow 0$ gives $1 / 3$.
c) The sequence $\left\{a_{n}\right\}$ with $a_{n}=\frac{\sin (n) e^{n}}{n e^{n}+1}$.

This sequence is sandwiched between $-e^{n} /\left(n e^{n}+1\right)$ and $e^{n} /\left(n e^{n}+1\right)$, both of which go to zero, so $a_{n} \rightarrow 0$.
3. (16 pts) For each of these series, indicate whether the series converges absolutely, converges conditionally, or diverges. Give a short explanation of why (e.g. "converges by comparison to $\sum 2^{-n "}$).
a) $\sum_{n=1}^{\infty} \frac{\sin (\pi n / 2)}{n}$.

This converges conditionally. The non-zero terms are $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots$
which is an alternating series (and adds up to $\pi / 4$). Since $\sum \frac{1}{2 n+1}$ diverges (by limit comparison to $\sum 1 / n$), the original series does NOT converge absolutely, just conditionally.
b) $\sum_{n=1}^{\infty} \frac{n \sin (1 / n)}{n^{2}+1}$.

This converges absolutely, by limit comparison to $\sum \frac{1}{n^{2}+1}$, since $n \sin (1 / n)=$ $\sin (1 / n) /(1 / n)$ approaches 1 as $n \rightarrow \infty$ (which you can see either with Taylor series or L'Hospital's rule).
c) $\sum_{n=1}^{\infty} \frac{n^{2} 2^{n}}{n!}$.

This converges absolutely by the ratio test, with $R=0$.
d) $\sum_{n=1}^{\infty} \frac{5 n^{2}(-1)^{n}+e^{-n}}{n^{2}+4 n+1}$.

This diverges by the divergence test. For large n, a_{n} is either close to 5 or -5 .
4. (10 points) Taylor polynomials
a) Compute the second order Taylor polynomial $T_{2}(x)$ for $f(x)=\tan (x)$ around $a=\pi / 4$.

Since $f^{\prime}(x)=\sec ^{2}(x)$ and $f^{\prime \prime}(x)=2 \sec ^{2}(x) \tan (x)$, we have $f(a)=1$, $f^{\prime}(a)=2$ and $f^{\prime \prime}(a)=4$, so $T_{2}(x)=1+2\left(x-\frac{\pi}{4}\right)+2\left(x-\frac{\pi}{4}\right)^{2}$.
b) Use this polynomial to approximate $\tan \left(\frac{\pi}{4}+0.1\right)$.
$T_{2}\left(\frac{\pi}{4}+0.1\right)=1+2(0.1)+2(0.1)^{2}=1.22$. The actual value of $\tan \left(\frac{\pi}{4}+0.1\right)$ is around 1.223049 .
5. Partial derivatives. (8 pts) Consider the function $f(x, y)=\ln (2+x+y) e^{x-y}-\ln (2)$.
a) Compute the partial derivatives f_{x} and f_{y}.

$$
\begin{aligned}
& f_{x}(x, y)=\frac{e^{x-y}}{2+x+y}+\ln (2+x+y) e^{x-y} \\
& f_{y}(x, y)=\frac{e^{x-y}}{2+x+y}-\ln (2+x+y) e^{x-y}
\end{aligned}
$$

b) Evaluate these partial derivatives at $(x, y)=(0,0)$.

$$
f_{x}(0,0)=(1 / 2)+\ln (2) \approx 1.2, f_{y}(0,0)=(1 / 2)-\ln (2) \approx-0.2
$$

Bonus (4 pts): Use these partial derivatives to approximate $f(-0.01,0.02)$. You can use the approximation $\ln (2) \approx 0.7$.

$$
f(-0.01,0.02) \approx f(0,0)-0.01 f_{x}(0,0)+0.02 f_{y}(0,0) \approx 0-0.012-0.004=
$$ -0.016 . The actual value is around -0.01565 .

6. (16 pts) Double integrals. Let R be the region in the $x-y$ plane bounded by the curve $y=\ln (x)$, the line $x=1$ and the line $y=2$.
[Note: All of this problem was done either on the first midterm or in class.]
a) Compute the area of R. (There are several ways to do this.)

Slicing horizontally gives $\int_{0}^{2}\left(e^{y}-1\right) d y=e^{y}-\left.y\right|_{0} ^{2}=e^{2}-3$. Slicing vertically gives $\int_{1}^{e^{2}}(2-\ln (x)) d x=3 x-\left.x \ln (x)\right|_{1} ^{e^{2}}=e^{2}-3$, where you need to integrate by parts to get $\int \ln (x) d x$.
b) Convert the double integral $\iint_{R} 2 \pi x d A$ into an iterated integral where you integrate first over y and then over x. Be explicit with your limits of integration!

Viewing this as a Type I integral, we get

$$
\int_{x=1}^{e^{2}} \int_{y=\ln (x)}^{2} 2 \pi x d y d x
$$

c) Convert the double integral $\iint_{R} 2 \pi x d A$ into an iterated integral where you integrate first over x and then over y. As with the previous part, be explicit with your limits of integration.

As a Type II integral, it is

$$
\int_{y=0}^{2} \int_{x=1}^{e^{y}} 2 \pi x d x d y
$$

d) Evaluate $\iint_{R} 2 \pi x d A$ by whichever method you prefer.

The second integral is easier, giving $\left.\int_{0}^{2} \pi x^{2}\right|_{1} ^{e^{y}} d y=\pi \int_{0}^{2} e^{2 y}-1 d y=$ $\pi\left(e^{4}-5\right) / 2$. (The first integral requires integration by parts, and of course gives the same answer.)

There were also 6 Quest problems, each worth 5 points and available as a separate file. The answers to these questions were $6,6,3,3,2$ and 4.

