M408S First Midterm Exam, February 21, 2013
1 (12 pts) A person drives her car from noon to 4 PM at a speed of $50+4 t+10(\sin (\pi t))$ miles per hour, where t is the number of hours since noon. (I.e., $t=2.5$ means 2:30 PM). At 1PM, the odometer reads 29850 miles. What does the odometer read at 3PM? (Yes, you can assume that the odometer is accurate!)
2) (10 pts) a) Compute $\sin \left(\tan ^{-1}(3)\right)$
(b) Compute $\cot \left(\sin ^{-1}(3 / 5)\right)$
3) (10 pts) Compute $\int 4 x \sin (2 x) d x$.
4) (10 pts) Compute $\int \frac{d x}{\left(1+x^{2}\right)^{3 / 2}}$
5) (10 pts) Compute $\int_{0}^{\pi / 2} \sin ^{3}(x) \cos ^{3}(x) d x$.
6) (10 pts) Compute $\int_{2}^{3} \frac{2 d x}{x^{3}-x}$
7) (10 pts) Compute $\int \frac{2 e^{2 x}+\sec ^{2}(x)}{\left(e^{2 x}+\tan (x)\right)^{2}} d x$
8) (10 pts) For what real values of p does the integral $\int_{1}^{\infty} \frac{d x}{x^{p}}$ converge? For what values does $\int_{0}^{1} \frac{d x}{x^{p}}$ converge? For what values does $\int_{0}^{\infty} \frac{d x}{x^{p}}$ converge? Be sure to justify your answers.
9 (18 pts) Let R_{1} be the region between the curve $y=\ln (x+1)$, the x axis, and the line $x=e^{2}-1$. Let R_{2} be the region between the curve $y=\ln (x+1)$, the y axis, and the line $y=2$. In this problem you get part credit for setting up the integrals correctly and full credit for setting them up and evaluating them correctly.
a) Compute the area of R_{1} by slicing vertically.
b) Compute the area of R_{2} by slicing horizontally.
c) Find the volume of the region obtained by rotating R_{2} around the y axis.

