1) A polar curve. Let C be the portion of the "cloverleaf" curve $r=\sin (2 \theta)$ that lies in the first quadrant.
a) Draw a rough sketch of C.

This looks like one quarter of a cloverleaf. The curve is tangent to both the x and y-axes, since $r=0$ at $\theta=0$ and $\theta=\pi / 2$. In between, in bulges out, reaching a maximum radius of 1 when $\theta=\pi / 4$.
b) Write down an integral that gives the arc-length of C. Simplify the integrand as much as possible, but do not attempt to compute the integral. (It can't be done in closed form).

The arc-length is given by $s=\int_{0}^{\pi / 2} \sqrt{r^{2}+(d r / d \theta)^{2}} d \theta$, which equals $\int_{0}^{\pi / 2} \sqrt{\sin ^{2}(2 \theta)+4 \cos ^{2}(2 \theta)} d \theta=\int_{0}^{\pi / 2} \sqrt{1+3 \cos ^{2}(\theta)} d \theta$. This is an elliptic integral and cannot be done in closed form.
c) Compute the area enclosed by C. (This integral can be done in closed form, and I expect you to do it.)
$\int_{0}^{\pi / 2} \frac{r^{2}}{2} d \theta=\int_{0}^{\pi / 2} \frac{1}{2} \sin ^{2}(2 \theta) d \theta=\int_{0}^{\pi / 2} \frac{1}{4}(1-\cos (4 \theta)) d \theta=\frac{\theta}{4}-\left.\frac{\sin (4 \theta)}{16}\right|_{0} ^{\pi / 2}=\frac{\pi}{8}$.
2. Lines and planes. (2 pages!) Let $P(3,-1,4), Q(2,1,7)$, and $R(1,5,8)$ be points in \mathbb{R}^{3}. Let \mathcal{L} be the line through P and Q, and let \mathcal{T} be the plane containing all three points.
a) Give a parametrization for \mathcal{L}.

Since $\overrightarrow{P Q}=\langle-1,-2,3\rangle$, we have $\mathbf{r}(t)=\langle 3,-1,4\rangle+\langle-1,2,3\rangle t$. (That's in vector form. In coordinates, that would be $x(t)=3-t, y(t)=-1+2 t$, $z(t)=4+3 t$.)
b) Write down the symmetric equations for \mathcal{L}. (That is, the equations relating x, y and z that don't involve the parameter t.)

$$
\frac{x-3}{-1}=\frac{y+1}{2}=\frac{z-4}{3} .
$$

c) Find a vector normal to \mathcal{T}.

This is

$$
\overrightarrow{P Q} \times \overrightarrow{P R}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
-1 & 2 & 3 \\
-2 & 6 & 4
\end{array}\right|=\langle-10,-2,-2\rangle .
$$

You could also rescale this to $\langle 5,1,1\rangle$.
d) Find the equation of \mathcal{T}. Simplify as much as possible.

$$
5(x-3)+(y+1)+(x-3)=0, \text { or } 5 x+y+z=18
$$

3. Curves. Consider the curve $\mathbf{r}(t)=\left(1+t^{2}, 3-2 \ln (t), 5+2 \sqrt{2}(t-1)\right)$.
a) Find the arc-length of the curve traced out as t goes from 1 to 3 .

Since the velocity is $\langle 2 t,-2 / t, 2 \sqrt{2}\rangle$, the speed is $\sqrt{4 t^{2}+4 / t^{2}+8}=2 t+$ $2 / t$, and the arc-length is $\int_{1}^{3}(2 t+2 / t) d t=t^{2}+\left.2 \ln (t)\right|_{1} ^{3}=8+2 \ln (3)$.
b) When $t=1$, this curve goes through the point $P(2,3,5)$. Find the tangent, principal normal, and binormal vectors at this point.

The velocity is $\langle 2 t,-2 / t, 2 \sqrt{2}\rangle=\langle 2,-2,2 \sqrt{2}\rangle$, so the tangent is $\mathbf{T}=$ $\frac{\langle 1,-1, \sqrt{2}\rangle}{2}$.

The acceleration is $\left\langle 2,2 / t^{2}, 0\right\rangle=\langle 2,2,0\rangle$. Note that this is orthogonal to the velocity, so it points in the direction of the principal normal, and $\mathbf{N}=\frac{\langle 1,1,0\rangle}{\sqrt{2}}$. Then $\mathbf{B}=\mathbf{T} \times \mathbf{N}=\frac{\langle-1,1, \sqrt{2}\rangle}{2}$.

If you didn't notice that the acceleration was orthogonal to the velocity, you could compute \mathbf{B} from $\mathbf{v} \times \mathbf{a}$ and then compute $\mathbf{N}=\mathbf{B} \times \mathbf{T}$.
4. Consider the function $f(x, y)=x y^{3}-x^{2} y$.
a) Compute the partial derivatives f_{x} and f_{y} (as functions of x and y).
$f_{x}=y^{3}-2 x y$ and $f_{y}=3 x y^{2}-x^{2}$.
b) The surface $z=f(x, y)$ contains the point $(-3,2,-42)$. Find the equation of the plane tangent to the surface at this point.

Evaluating at $(-3,2)$ gives $f_{x}=20$ and $f_{y}=-45$, so $z+42=20(x+$ $3)-45(y-2)$, or $z=20 x-45 y+108$, or $-20 x+45+z=108$. You could also get this from the normal vector being $\left\langle-f_{x},-f_{y}, 1\right\rangle$
c) Using linearization, differentials, or the answer to (b) (all of which amount to essentially the same thing), approximate $f(-2.999,2.002)$.
$z+42 \approx 20(0.001)-45(0.002)=-0.07$, so $f(-2.999,2.002)=z \approx$ -42.07 .
5. Level surfaces. Consider the surface $e^{x}+2 y+y \ln (z)=7$. This goes through the point $(0,3,1)$.
a) Find a vector normal to the surface at the point $(0,3,1)$.

$$
\nabla g=\left\langle e^{x}, 2+\ln (z), y / z\right\rangle=\langle 1,2,3\rangle .
$$

b) Find the equation of the plane tangent to the surface at that point.

This comes immediately from the normal vector: $x+2(y-3)+3(z-1)=0$, or equivalently $x+2 y+3 z=9$.
6. Max/min. Consider the function $f(x, y)=e^{y}\left(y^{2}-x^{2}\right)$.
a) Compute the partial derivatives $f_{x}, f_{y}, f_{x x}, f_{x y}$ and $f_{y y}$.
$f_{x}=-2 x e^{y}, f_{y}=\left(2 y+y^{2}-x^{2}\right) e^{y}, f_{x x}=-2 e^{y}, f_{x y}=-2 x e^{y}, f_{y y}=$ $\left(2+4 y+y^{2}\right) e^{y}$.
b) Find all the critical points of this function.

Setting $f_{x}=0$ gives $x=0$ (since e^{y} is never zero). Then setting $f_{y}=0$ gives $2 y+y^{2}=0$, hence $y=0$ or $y=-2$. So our two critical points are $(0,0)$ and $(0,-2)$.
c) For each critical point, use the second derivative test to determine whether the critical point is a local maximum, a local minimum, or a saddle point.

At $(0,0)$, we have $f_{x x}=-2, f_{x y}=0$ and $f_{y y}=2$, so this is a saddle point.

At $(0,-2)$ we have $f_{x x}=-2 e^{-2}, f_{x y}=0$ and $f_{y y}=-2 e^{-2}$, so this is a local maximum.
7. Double integrals in Cartesian coordinates. (2 pages!)
a) Compute $\iint_{D_{a}} \frac{3 x}{y} d A$ where D_{a} is the region bounded by the lines $x=0$, $x=1$, and $y=1$ and the curve $y=2 e^{x}$.

This is a type I region. Our integral is

$$
\begin{aligned}
\int_{0}^{1} \int_{1}^{2 e^{x}} \frac{3 x}{y} d y d x & =\left.\int_{0}^{1} 3 x \ln (y)\right|_{y=1} ^{2 e^{x}} d x \\
& =\int_{0}^{1} 3 x^{2}+3 x \ln (2) d x \quad \text { since } \ln \left(2 e^{x}\right)=x+\ln (2) \\
& =1+\frac{3 \ln (2)}{2}
\end{aligned}
$$

b) Compute $\iint_{D_{b}} x^{2} y d A$ where D_{b} is the region bounded by the lines $y=0$, $y=1$, and $x=0$ and the curve $y=\ln (x)$.

This is a Type II region, and we should rewrite $y=\ln (x)$ as $x=e^{y}$.

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{e^{y}} x^{2} y d x d y & =\int_{0}^{1} \frac{y e^{3 y} d y}{3} \\
& =\frac{y e^{3 y}}{9}-\left.\frac{e^{3 y}}{27}\right|_{0} ^{1} \quad \text { Integrating by parts } \\
& =\frac{e^{3}}{9}-\frac{e^{3}}{27}+\frac{1}{27}=\frac{2 e^{3}+1}{27} .
\end{aligned}
$$

c) Rewrite the iterated integral $\int_{1}^{3} \int_{x^{2}}^{4 x-3} \cos \left(x^{2} y^{3}\right) d y d x$ as an iterated integral $d x d y$. (That is, swap the order of integration.) You do NOT need to evaluate the resulting iterated integral!

The region of integration is bounded by the curves $y=x^{2}($ aka $x=\sqrt{y})$ and $y=4 x-3$ (aka $x=(y+3) / 4)$, which intersect at the points $(1,1)$ and $(3,9)$. If we view this as a type II region, we integrate $d x$ from $x=(y+3) / 4$ to \sqrt{y}, and then integrate $d y$ from $y=1$ to $y=9$. That is, our integral is

$$
\int_{1}^{9} \int_{\frac{y+3}{4}}^{\sqrt{y}} \cos \left(x^{2} y^{3}\right) d x d y
$$

Note that the integrand has NOTHING to do with the process of switching the order of integration. It just comes along for the ride.
8. Laminae. Suppose we have a fan blade in the shape of the region you considered in problem 1. That is, it is bounded by the polar curve $r=\sin (2 \theta)$ in the first quadrant. [Note that $\sin (2 \theta)=2 \sin (\theta) \cos (\theta)$.] The density of this blade is given by $\rho(x, y)=\frac{x}{x^{2}+y^{2}}$. [Yes, the density blows up as we approach the origin, but all of the integrals in this problem still converge. Also, this problem is best done in polar coordinates.]
a) Compute the mass of the blade.

We want to compute $\iint_{D} \rho d A$. In polar coordinates, $\rho=x / r^{2}=\cos (\theta) / r$ and $d A=r d r d \theta$, so our integral is

$$
\int_{0}^{\pi / 2} \int_{0}^{2 \sin (\theta) \cos (\theta)} \cos (\theta) d r d \theta=\int_{0}^{\pi / 2} 2 \sin (\theta) \cos ^{2}(\theta) d \theta=2 / 3
$$

where we did a u-substitution with $u=\cos (\theta), d u=-\sin (\theta) d \theta$.
b) Compute the moment of inertia I_{0}. [The last step in the integral is a little tricky. Remember that $\sin ^{2}(\theta)+\cos ^{2}(\theta)=1$.]

This is the same integral, only with an extra factor of r^{2}, since $I_{0}=$ $\iint_{D} r^{2} \rho d A$. This gives

$$
\begin{aligned}
\int_{0}^{\pi / 2} \int_{0}^{2 \sin (\theta) \cos (\theta)} r^{2} \cos (\theta) d r d \theta & =\int_{0}^{\pi / 2} \frac{8}{3} \sin ^{3}(\theta) \cos ^{4}(\theta) d \theta \\
& =\int_{0}^{\pi / 2} \frac{8}{3} \sin (\theta)\left[\cos ^{4}(\theta)-\cos ^{6}(\theta)\right] d \theta \\
& =\frac{8}{3}\left(\frac{1}{5}-\frac{1}{7}\right)=\frac{16}{105}
\end{aligned}
$$

where we used $\sin ^{2}(\theta)=1-\cos ^{2}(\theta)$ to get to the second line and $u=\cos (\theta)$ to get to the third.
9. Mappings. (2 pages!) Let D be the parallelogram (actually a square) whose corners are $(0,0),(3,-1),(1,3)$ and $(4,2)$. Our goal is to compute $\iint_{D} e^{(x+y) / 2} d A$.
a) Find a mapping that sends the unit square to D.

$$
\langle x, y\rangle=u\langle 3,-1\rangle+v\langle 1,3\rangle, \text { or } x=3 u+v \text { and } y=-u+3 v .
$$

b) Rewrite our integral as an integral over the unit square. Don't forget the Jacobian!

Our integrand is $\exp \left(\frac{x+y}{2}\right)=\exp (u+2 v)$ and our Jacobian is $\left|\begin{array}{cc}3 & 1 \\ -1 & 3\end{array}\right|=$ 10 , so the integral is

$$
\int_{0}^{1} \int_{0}^{1} 10 e^{u+2 v} d u d v
$$

c) Evaluate that new-and-improved integral.

Integrating over u gives $\int_{0}^{1} 10(e-1) e^{2 v} d v$, and then integrating over v gives $5(e-1)\left(e^{2}-1\right)$, which you can also expand as $5 e^{3}-5 e^{2}-5 e+5$.

