
M408M Final Exam Solutions, December 9, 2015

1) A polar curve. Let C be the portion of the “cloverleaf” curve r = sin(2θ)
that lies in the first quadrant.

a) Draw a rough sketch of C.

This looks like one quarter of a cloverleaf. The curve is tangent to both
the x and y-axes, since r = 0 at θ = 0 and θ = π/2. In between, in bulges
out, reaching a maximum radius of 1 when θ = π/4.

b) Write down an integral that gives the arc-length of C. Simplify the inte-
grand as much as possible, but do not attempt to compute the integral.
(It can’t be done in closed form).

The arc-length is given by s =
∫ π/2
0

√
r2 + (dr/dθ)2dθ, which equals∫ π/2

0

√
sin2(2θ) + 4 cos2(2θ)dθ =

∫ π/2
0

√
1 + 3 cos2(θ)dθ. This is an elliptic

integral and cannot be done in closed form.

c) Compute the area enclosed by C. (This integral can be done in closed
form, and I expect you to do it.)

∫ π/2

0

r2

2
dθ =

∫ π/2

0

1

2
sin2(2θ)dθ =

∫ π/2

0

1

4
(1−cos(4θ))dθ =

θ

4
−sin(4θ)

16

∣∣∣π/2
0

=
π

8
.

2. Lines and planes. (2 pages!) Let P (3,−1, 4), Q(2, 1, 7), and R(1, 5, 8) be
points in R3. Let L be the line through P and Q, and let T be the plane
containing all three points.

a) Give a parametrization for L.

Since ~PQ = 〈−1,−2, 3〉, we have r(t) = 〈3,−1, 4〉 + 〈−1, 2, 3〉t. (That’s
in vector form. In coordinates, that would be x(t) = 3 − t, y(t) = −1 + 2t,
z(t) = 4 + 3t.)

b) Write down the symmetric equations for L. (That is, the equations relating
x, y and z that don’t involve the parameter t.)

x− 3

−1
=
y + 1

2
=
z − 4

3
.
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c) Find a vector normal to T .

This is

~PQ× ~PR =

∣∣∣∣∣∣
~i ~j ~k
−1 2 3
−2 6 4

∣∣∣∣∣∣ = 〈−10,−2,−2〉.

You could also rescale this to 〈5, 1, 1〉.
d) Find the equation of T . Simplify as much as possible.

5(x− 3) + (y + 1) + (x− 3) = 0, or 5x+ y + z = 18.

3. Curves. Consider the curve r(t) = (1 + t2, 3− 2 ln(t), 5 + 2
√

2(t− 1)).

a) Find the arc-length of the curve traced out as t goes from 1 to 3.

Since the velocity is 〈2t,−2/t, 2
√

2〉, the speed is
√

4t2 + 4/t2 + 8 = 2t+

2/t, and the arc-length is
∫ 3

1
(2t+ 2/t)dt = t2 + 2 ln(t)

∣∣∣3
1

= 8 + 2 ln(3).

b)When t = 1, this curve goes through the point P (2, 3, 5). Find the tangent,
principal normal, and binormal vectors at this point.

The velocity is 〈2t,−2/t, 2
√

2〉 = 〈2,−2, 2
√

2〉, so the tangent is T =
〈1,−1,

√
2〉

2
.

The acceleration is 〈2, 2/t2, 0〉 = 〈2, 2, 0〉. Note that this is orthogonal
to the velocity, so it points in the direction of the principal normal, and

N = 〈1,1,0〉√
2

. Then B = T×N = 〈−1,1,
√
2〉

2
.

If you didn’t notice that the acceleration was orthogonal to the velocity,
you could compute B from v × a and then compute N = B×T.

4. Consider the function f(x, y) = xy3 − x2y.

a) Compute the partial derivatives fx and fy (as functions of x and y).

fx = y3 − 2xy and fy = 3xy2 − x2.
b) The surface z = f(x, y) contains the point (−3, 2,−42). Find the equation
of the plane tangent to the surface at this point.

Evaluating at (−3, 2) gives fx = 20 and fy = −45, so z + 42 = 20(x +
3)− 45(y − 2), or z = 20x− 45y + 108, or −20x+ 45 + z = 108. You could
also get this from the normal vector being 〈−fx,−fy, 1〉
c) Using linearization, differentials, or the answer to (b) (all of which amount
to essentially the same thing), approximate f(−2.999, 2.002).

z + 42 ≈ 20(0.001) − 45(0.002) = −0.07, so f(−2.999, 2.002) = z ≈
−42.07.
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5. Level surfaces. Consider the surface ex + 2y + y ln(z) = 7. This goes
through the point (0,3,1).

a) Find a vector normal to the surface at the point (0,3,1).

∇g = 〈ex, 2 + ln(z), y/z〉 = 〈1, 2, 3〉.

b) Find the equation of the plane tangent to the surface at that point.

This comes immediately from the normal vector: x+2(y−3)+3(z−1) = 0,
or equivalently x+ 2y + 3z = 9.

6. Max/min. Consider the function f(x, y) = ey(y2 − x2).
a) Compute the partial derivatives fx, fy, fxx, fxy and fyy.

fx = −2xey, fy = (2y + y2 − x2)ey, fxx = −2ey, fxy = −2xey, fyy =
(2 + 4y + y2)ey.

b) Find all the critical points of this function.

Setting fx = 0 gives x = 0 (since ey is never zero). Then setting fy = 0
gives 2y + y2 = 0, hence y = 0 or y = −2. So our two critical points are
(0, 0) and (0,−2).

c) For each critical point, use the second derivative test to determine whether
the critical point is a local maximum, a local minimum, or a saddle point.

At (0, 0), we have fxx = −2, fxy = 0 and fyy = 2, so this is a saddle
point.

At (0,−2) we have fxx = −2e−2, fxy = 0 and fyy = −2e−2, so this is a
local maximum.

7. Double integrals in Cartesian coordinates. (2 pages!)

a) Compute
∫∫

Da

3x
y
dA where Da is the region bounded by the lines x = 0,

x = 1, and y = 1 and the curve y = 2ex.

This is a type I region. Our integral is∫ 1

0

∫ 2ex

1

3x

y
dydx =

∫ 1

0

3x ln(y)
∣∣∣2ex
y=1

dx

=

∫ 1

0

3x2 + 3x ln(2)dx since ln(2ex) = x+ ln(2)

= 1 +
3 ln(2)

2
.
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b) Compute
∫∫

Db
x2ydA where Db is the region bounded by the lines y = 0,

y = 1, and x = 0 and the curve y = ln(x).

This is a Type II region, and we should rewrite y = ln(x) as x = ey.∫ 1

0

∫ ey

0

x2ydxdy =

∫ 1

0

ye3ydy

3

=
ye3y

9
− e3y

27

∣∣∣1
0

Integrating by parts

=
e3

9
− e3

27
+

1

27
=

2e3 + 1

27
.

c) Rewrite the iterated integral
∫ 3

1

∫ 4x−3
x2

cos(x2y3)dy dx as an iterated integral
dxdy. (That is, swap the order of integration.) You do NOT need to evaluate
the resulting iterated integral!

The region of integration is bounded by the curves y = x2 (aka x =
√
y)

and y = 4x− 3 (aka x = (y + 3)/4), which intersect at the points (1, 1) and
(3, 9). If we view this as a type II region, we integrate dx from x = (y+ 3)/4
to
√
y, and then integrate dy from y = 1 to y = 9. That is, our integral is∫ 9

1

∫ √y
y+3
4

cos(x2y3)dx dy.

Note that the integrand has NOTHING to do with the process of switching
the order of integration. It just comes along for the ride.

8. Laminae. Suppose we have a fan blade in the shape of the region you
considered in problem 1. That is, it is bounded by the polar curve r = sin(2θ)
in the first quadrant. [Note that sin(2θ) = 2 sin(θ) cos(θ).] The density of
this blade is given by ρ(x, y) = x

x2+y2
. [Yes, the density blows up as we

approach the origin, but all of the integrals in this problem still converge.
Also, this problem is best done in polar coordinates.]

a) Compute the mass of the blade.

We want to compute
∫∫

D
ρdA. In polar coordinates, ρ = x/r2 = cos(θ)/r

and dA = rdr dθ, so our integral is∫ π/2

0

∫ 2 sin(θ) cos(θ)

0

cos(θ)dr dθ =

∫ π/2

0

2 sin(θ) cos2(θ)dθ = 2/3,

where we did a u-substitution with u = cos(θ), du = − sin(θ)dθ.
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b) Compute the moment of inertia I0. [The last step in the integral is a little
tricky. Remember that sin2(θ) + cos2(θ) = 1.]

This is the same integral, only with an extra factor of r2, since I0 =∫∫
D
r2ρdA. This gives∫ π/2

0

∫ 2 sin(θ) cos(θ)

0

r2 cos(θ)dr dθ =

∫ π/2

0

8

3
sin3(θ) cos4(θ)dθ

=

∫ π/2

0

8

3
sin(θ)[cos4(θ)− cos6(θ)]dθ

=
8

3

(
1

5
− 1

7

)
=

16

105
,

where we used sin2(θ) = 1− cos2(θ) to get to the second line and u = cos(θ)
to get to the third.

9. Mappings. (2 pages!) Let D be the parallelogram (actually a square)
whose corners are (0, 0), (3,−1), (1, 3) and (4, 2). Our goal is to compute∫∫

D
e(x+y)/2dA.

a) Find a mapping that sends the unit square to D.

〈x, y〉 = u〈3,−1〉+ v〈1, 3〉, or x = 3u+ v and y = −u+ 3v.

b) Rewrite our integral as an integral over the unit square. Don’t forget the
Jacobian!

Our integrand is exp(x+y
2

) = exp(u + 2v) and our Jacobian is

∣∣∣∣ 3 1
−1 3

∣∣∣∣ =

10, so the integral is ∫ 1

0

∫ 1

0

10eu+2vdudv

c) Evaluate that new-and-improved integral.

Integrating over u gives
∫ 1

0
10(e − 1)e2vdv, and then integrating over v

gives 5(e− 1)(e2 − 1), which you can also expand as 5e3 − 5e2 − 5e+ 5.
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