M346 First Midterm Exam, September 22, 2005

1. Let $V=\mathbb{R}_{2}[t]$ with (standard) basis $\mathcal{B}=\left\{1, t, t^{2}\right\}$ and let $W=M_{2,2}$ be the space of 2 by 2 real matrices with (standard) basis
$\mathcal{D}=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$. Consider the linear transformation $L(\mathbf{p})=\left(\begin{array}{cc}\mathbf{p}(1)-\mathbf{p}(0) & \mathbf{p}(2)-\mathbf{p}(0) \\ \mathbf{p}(-1)-\mathbf{p}(0) & \mathbf{p}(-2)-\mathbf{p}(0)\end{array}\right)$ from $V$ to $W$.
a) Find the matrix of $L$ relative to the bases $\mathcal{B}$ and $\mathcal{D}$.
b) What is the dimension of $\operatorname{Ker}(L)$ ? Find a basis for $\operatorname{Ker}(L)$.
c) What is the dimension of Range $(L)$ ? Find a basis for $\operatorname{Range}(L)$.
2. Let $A=\left(\begin{array}{cccc}1 & 2 & 3 & 4 \\ 2 & 4 & 5 & 7 \\ 5 & 10 & 13 & 18\end{array}\right)$.
a) Let $V=\left\{\mathbf{x} \in \mathbb{R}^{4} \mid A \mathbf{x}=0\right\}$. What is the dimension of $V$ ? Find a basis for $V$.
b) In $\mathbb{R}^{3}$, consider the vectors $(1,2,5)^{T},(2,4,10)^{T},(3,5,13)^{T}$, and $(4,7,18)^{T}$. Are these vectors linearly independent? Do they span $\mathbb{R}^{3}$ ?
c) Find a basis for the span of the four vectors of part (b).
3. Let $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $L\left(\binom{x_{1}}{x_{2}}\right)=\binom{8 x_{1}-10 x_{2}}{3 x_{1}-3 x_{2}}$. On $\mathbb{R}^{2}$, consider the standard basis $\mathcal{E}$ and the alternate basis $\mathcal{B}=\left\{\binom{2}{1},\binom{5}{3}\right\}$. Finally, let $\mathbf{v}=\binom{8}{3}$.
a) Find $P_{\mathcal{E B}}, P_{\mathcal{B E}},[\mathbf{v}]_{\mathcal{E}}$ and $[\mathbf{v}]_{\mathcal{B}}$.
b) Find the matrix $[L]_{\mathcal{E}}$ and the matrix $[L]_{\mathcal{B}}$.
4. The two parts of this problem are NOT connected.
a) In $\mathbb{R}_{2}[t]$, consider the vectors $\mathbf{b}_{1}=1+t+2 t^{2}, \mathbf{b}_{2}=2+3 t+5 t^{2}$ and $\mathbf{b}_{3}=3+7 t+9 t^{2}$. Do these vectors form a basis for $\mathbb{R}_{2}[t]$ ? If so, find $[\mathbf{v}]_{\mathcal{B}}$, where $\mathbf{v}=1-2 t$. If not, find constants $a_{1}, a_{2}, a_{3}$, not all zero, such that $a_{1} \mathbf{b}_{1}+a_{2} \mathbf{b}_{2}+a_{3} \mathbf{b}_{3}=0$.
b) In $\mathbb{R}_{3}[t]$, let $V$ be the set of polynomials $\mathbf{p}$ for which $\mathbf{p}(0)=\mathbf{p}(1)=0$. Find a basis for $V$.
5. True of False? Each question is worth 4 points. You do NOT need to justify your answers, and partial credit will NOT be given.
a) The plane $x_{1}+3 x_{2}-4 x_{3}=0$ is a subspace of $\mathbb{R}^{3}$.
b) If $A$ is a $3 \times 5$ matrix, then the dimension of the null space of $A$ is at least 2.
c) Let $L: \mathbb{R}_{5}[t] \rightarrow \mathbb{R}^{3}$ be a linear transformation. If $L$ is onto, then the kernel of $L$ is 2-dimensional.
d) Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be a basis for a vector space $V$. If $n$ vectors $\mathbf{d}_{1}, \ldots, \mathbf{d}_{n}$ span $V$, then the vectors $\left[\mathbf{d}_{1}\right]_{\mathcal{B}}, \ldots,\left[\mathbf{d}_{n}\right]_{\mathcal{B}}$ are linearly independent.
e) Every linear transformation from $\mathbb{R}^{5}$ to $\mathbb{R}^{4}$ is multiplication by a $5 \times 4$ matrix.
