1a) In \mathbb{R}^{3}, let \mathcal{E} be the standard basis and let $\mathcal{B}=\left\{\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 4\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\}$ be an alternate basis. Let $\mathbf{v}=\left(\begin{array}{c}3 \\ -2 \\ 14\end{array}\right)$. Find $P_{\mathcal{E B}}, P_{\mathcal{B E}}$ and $[\mathbf{v}]_{\mathcal{B}}$.

$$
P_{\mathcal{E B}}=\left(\mathbf{b}_{1} \mathbf{b}_{2} \mathbf{b}_{3}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 4 & 1
\end{array}\right), P_{\mathcal{B E}}=P_{\mathcal{E B}}^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
5 & -4 & 1
\end{array}\right) \text {, and }
$$ $[\mathbf{v}]_{\mathcal{B}}=P_{\mathcal{B E}} \mathbf{v}=\left(\begin{array}{c}3 \\ -8 \\ 37\end{array}\right)$.

1b) In $\mathbb{R}_{2}[t]$, let $\mathcal{E}=\left\{1, t, t^{2}\right\}$ be the standard basis and let $\mathcal{B}=\left\{1+2 t+3 t^{2}, t+4 t^{2}, t^{2}\right\}$ be an alternate basis, and let $\mathbf{v}=3-2 t+14 t^{2}$. Find $P_{\mathcal{E} \mathcal{B}}, P_{\mathcal{B E}}$ and $[\mathbf{v}]_{\mathcal{B}}$.

This is essentially the same problem as $1 a$, and has the exact same answers.
2. Let $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ be given by $L\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{c}x_{1}+x_{2}+x_{3} \\ x_{1}+2 x_{2}+3 x_{3} \\ x_{1}+3 x_{2}+5 x_{3} \\ x_{1}+4 x_{2}+7 x_{3}\end{array}\right)$.
a) Find the matrix of L (relative to the standard bases for \mathbb{R}^{3} and \mathbb{R}^{4}.

$$
[L]_{\mathcal{E}}=\left(L\left(\mathbf{e}_{1}\right) L\left(\mathbf{e}_{2}\right) L\left(\mathbf{e}_{3}\right)\right)=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 3 & 5 \\
1 & 4 & 7
\end{array}\right)
$$

b) Let $V=\left\{\mathbf{x} \in \mathbb{R}^{3}: L(\mathbf{x})=0\right\}$. What is the dimension of V ? Find a basis for V.

Row-reducing $[L]_{\mathcal{E}}$ gives $\left(\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$. Since there is one free variable, V is one dimensional, and a basis is $\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right)$.
3. On \mathbb{R}^{2}, consider the basis $\mathcal{B}=\left\{\binom{2}{1},\binom{3}{2}\right\}$. Let $L(\mathbf{x})=A \mathbf{x}$, where $A=\left(\begin{array}{ll}19 & -30 \\ 10 & -16\end{array}\right)$.
a) Find the change-of-basis matrices $P_{\mathcal{E B}}$ and $P_{\mathcal{B E}}$, where $\mathcal{E}=\left\{\binom{1}{0},\binom{0}{1}\right\}$ is the standard basis.

Much as in problem 1, $P_{\mathcal{E B}}=\left(\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right)$ and $P_{\mathcal{B E}}=P_{\mathcal{E B}}^{-1}=\left(\begin{array}{cc}2 & -3 \\ -1 & 2\end{array}\right)$. (You can get that by row reduction or by the formula for the inverse of a 2×2 matrix.)
b) Find the matrix of L relative to the \mathcal{B} basis.

$$
[L]_{\mathcal{B}}=P_{\mathcal{B E}}[L]_{\mathcal{E}} P_{\mathcal{E B}}=\left(\begin{array}{cc}
4 & 0 \\
0 & -1
\end{array}\right)
$$

c) If we were given the problem of solving the evolution equations $\mathbf{x}(n+1)=$ $A \mathbf{x}(n)$, we would switch to coordinates $\mathbf{y}=[\mathbf{x}]_{\mathcal{B}}$. Rewrite the equations in terms of the variables y_{1} and y_{2}. You do not need to solve these equations for $\mathbf{y}(n)$ in terms of $\mathbf{y}(0)$. Just get $\mathbf{y}(n+1)$ in terms of $\mathbf{y}(n)$.

$$
\mathbf{y}(n+1)=[L]_{\mathcal{B}} \mathbf{y}(n), \text { so } y_{1}(n+1)=4 y_{1}(n) \text { and } y_{2}(n+1)=-y_{2}(n)
$$

4. True of False? Each question is worth 5 points. You do NOT need to justify your answers, and partial credit will NOT be given.
a) If four vectors in $\mathbb{R}_{3}[t]$ are linearly independent, then they form a basis for $\mathbb{R}_{3}[t]$.

True, since $\mathbb{R}_{3}[t]$ is 4-dimensional.
b) If A is a 3×5 matrix whose rank is two, then the set of solutions to $A \mathbf{x}=0$ is a 2-dimensional subspace of \mathbb{R}^{5}.

False. The dimension of the null space is 3 .
c) If \mathcal{B} and \mathcal{D} are basis for a vector space V, then the change-of-basis matrices $P_{\mathcal{B D}}$ and $P_{\mathcal{D B}}$ are inverses of one another.

True.
d) If $P_{\mathcal{B D}}$ is a change-of-basis matrix, then for any vector $\mathbf{v},[\mathbf{v}]_{\mathcal{B}}=P_{\mathcal{D B}}[\mathbf{v}]_{\mathcal{D}}$.

False. $[\mathbf{v}]_{\mathcal{B}}=P_{\mathcal{B D}}[\mathbf{v}]_{\mathcal{D}}$.
e) The columns of an $m \times n$ matrix A span \mathbb{R}^{m} if and only the reduced row-echelon form of A has a pivot in each column.

False. You need a pivot in each row, not a pivot in each column.

