
M346 Final Exam, December 15, 2009

1) The matrix A =











1 3 2 5
2 −1 1 −1
0 1 2 3
3 3 5 7











row-reduces to B =











1 0 0 −4/11
0 1 0 13/11
0 0 1 10/11
0 0 0 0











.

a)Find all solutions to Ax = 0.

These are the same as the solutions to Bx = 0, namely all multiples of
(4/11,−13/11,−10/11, 1)T , or equivalently all multiples of (4,−13,−10, 11)T .

b)Find a basis for the column space of A.

Since there are pivots in the first three columns of B, the first three

columns of A for a basis. That is, the answer is
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2
5





























.

c)In R3[t], let V be the span of the vectors {1 + 2t + 3t3, 3 − t + t2 + 3t3,
2+ t+2t2 +5t3, 5− t+3t2 +7t3}. What is the dimension of V ? Find a basis
for V .

If you express things in coordinates with respect to the standard basis
{1, t, t2, t3}, this becomes the same problem as (b). V is 3-dimensional, as a
basis consists of those polynomials whose coordinates are the answer to (b),
namely {1+2t+3t3, 3−t+t2 +3t3, 2+t+2t+2+5t3}. Note that the answer
is NOT a matrix or a list of column vectors. Those are just the coordinates

of the answer, not the answer itself.

2. a) Find the eigenvalues of











3 −5 16 4
0 3 11 0
0 15 −1 0
0 4 1 2











. You do not need to find

the eigenvectors.

The matrix is block triangular, with an upper left 1×1 block and a lower
right 3 × 3 block. The 3 × 3 block is itself block triangular, with an upper

left 2 × 2 piece
(

3 11
15 −1

)

and a lower right 1 × 1 piece. The rows of the

2 × 2 piece sum to 14, and the trace is 2, so that piece has eigenvalues 14
and −12, and the whole matrix has eigenvalues 3, 14,−12, 2.

b) Find the eigenvalues and eigenvectors of
(

3 8
2 −3

)

.

The determinant is −25 and the trace is zero, so the eigenvalues are 5

1



and −5. The eigenvectors (obtained by row reductions) are
(

4
1

)

and
(−1

1

)

,

respectively.

3. Consider the equations

x1(n + 1) = 2x1(n) + 3x2(n)

x2(n + 1) = 2x1(n) + x2(n)

a) If x(0) =
(

1
0

)

, what is x(n)?

Since this is an x(n + 1) = Ax(n) problem, we diagonalize A and get

eigenvalues 4 and -1 with eigenvectors b1 =
(

3
2

)

and b2 =
(

1
−1

)

. Since

x(0) = (b1 + 2b2)/5, x(n) = (4nb1 + 2(−1)nb2)/5 = 1
5

(

3 · 4n + 2(−1)n

2 · 4n − 2(−1)n

)

.

b) If x(0) =
(

0
1

)

, what is x(n)?

In this instance x(0) = (b1 − 3b2)/5, so x(n) = (4nb1 − 3(−1)nb2)/5 =

1
5

(

3 · 4n − 3(−1)n

2 · 4n + 3(−1)n

)

.

c) Compute An, where A =
(

2 3
2 1

)

.

You can either compute PDnP−1 or notice that the first column of An is
the answer to (a) and the second column is the answer to (b). Either way,

you get An = 1
5

(

3 · 4n + 2(−1)n 3 · 4n − 3(−1)n

2 · 4n − 2(−1)n 2 · 4n + 3(−1)n

)

.

4. Consider the nonlinear system of differential equations

dx1

dt
= x2

1 + x1x2 − 4x1 + x2 + 1

dx2

dt
= x2

2 + x1 − 2x2

This system of equations has a fixed point at x1 = x2 = 1.

a) Write down a linear system of equations that approximates this nonlinear

system when x is close to
(

1
1

)

.
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Defining y = x − (1, 1)T , we get dy

dt
≈ Ay, where

A =

(

∂f1

∂x1

∂f1

∂x2

∂f2

∂x1

∂f2

∂x2

)∣

∣

∣

∣

∣

(1,1)

=
(

2x1 + x2 − 4 x1 + 1
1 2x2 − 2

)∣

∣

∣

∣

(1,1)

=
(−1 2

1 0

)

b) Diagonalize the matrix that appears in the linear equations.

Eigenvalues -2 and 1, with eigenvectors (−2, 1)T and (1, 1)T .

c) Identify the stable, neutrally stable, and unstable modes. What is the
dominant mode, and how fast does it grow or shrink? Is the system as a

whole stable, neutral, or unstable near
(

1
1

)

?

The (−2, 1)T mode is stable, and shrinks as e−2t. The (1, 1)T mode is
unstable, and grows as et. That’s the dominant mode. Since there is an
unstable mode, the system is unstable.

5. Gram-Schmidt. In R3, consider the three vectors x1 = (2, 1, 1)T , x2 =
(5,−1, 3)T and x3 = (4, 6,−8)T .

a) Use Gram-Schmidt to convert this basis to an orthogonal basis {y1,y2,y3}.
y1 = x1 = (2, 1, 1)T .

y2 = x2 − 〈y1|x2〉
〈y1|y1〉

y1 = x2 − (12/6)y1 = (1,−3, 1)T .

y3 = x3 − 〈y1|x3〉
〈y1|y1〉

y1 − 〈y2|x3〉
〈y2|y2〉

y2 = x3 − y1 + 2y2 = (4,−1,−7)T .

b) Decompose the vector (1, 2, 3)T as a linear combination of the vectors in
this orthogonal basis. (Warning: the answer involves fractions.)

Let v = (1, 2, 3)T . Since 〈y1|v〉 = 7, 〈y1|y1〉 = 6, 〈y2|v〉 = −2, 〈y2|y2〉 =
11, 〈y3|v〉 = −19, 〈y3|y3〉 = 66, v = 6

7
y1 − 2

11
y2 − 19

66
y3.

6. Let V be the space of functions on the interval [0, π] with boundary
conditions f(0) = 0, f(π) = 0.

a) Let A = 4 + d2

dx2 be an operator on V . (In other words, (Af)(x) =
4f(x) + f ′′(x)) Find all the eigenvalues and eigenvectors of A.

We already know that the eigenvalues of d2/dx2 are −n2π2/L2 = −n2

with eigenvectors sin(nπx/L) = sin(nx), so the eigenvalues of A are 4 − n2

with the same eigenvectors (or, if you prefer, eigenfunctions) sin(nx).

b) Consider the partial differential equation

∂2f(x, t)

∂t2
= 4f(x, t) +

∂2f(x, t)

∂x2
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on [0, π] × R, and with the boundary conditions f(0, t) = f(π, t) = 0 for
all t. Find a solution to this equation with the initial conditions f(x, 0) =
sin(x) − 5 sin(3x), ∂f

∂t
(x, 0) = 3 sin(2x).

This is of the form d2 ~f

dt2
= A~f , so we break things down in a basis of

eigenvectors of A. The modes with λ > 0 grow as cosh(
√

λt) and sinh(
√

λt),
the modes with λ = 0 go as c1 + c2t, and the modes with λ < 0 go as
cos(

√
−λt) and sin(

√
−λt).

Our initial conditions only have elements in the n = 1, n = 2 and n = 3
eigenspaces, which have positive, zero, and negative eigenvalues, and our
final answer is

f(x, t) = cosh(
√

3t) sin(x) + 3t sin(2x) − 5 cos(
√

5t) sin(3x).

7. Consider the “sawtooth function”, defined by f(x) = x for 0 < x < 1 and
with f(x + 1) = f(x). (This function is discontinuous when x is an integer.)

a) We write f(x) =
∑

n f̂n exp(2πinx) as a Fourier series. Find the Fourier
coefficients f̂n.

f̂n =
∫ 1
0 xe−2πinxdx. For n = 0 this equals 1/2. For any other value of n we

integrate by parts, using the fact that
∫

xekxdx = xekx

k
− ∫

ekx

k
dx = (kx−1)ekx

k2 .
Plugging in k = 2πin and noting that e2πinx equals 1 at x = 0 and x = 1, we
get f̂n = i

2πn
for n 6= 0.

b) We can also write f(x) as a sum of sines and cosines: f(x) = a0

2
+

∑

n an cos(2πnx) +
∑

n bn sin(2πnx). Find the coefficients an and bn.

an = f̂n + f̂−n. This is 1 if n = 0 and 0 otherwise.

bn = if̂n − if̂−n = − 1
nπ

.

c) Suppose that g(x) is a periodic function that solves the equation d2g(x)/dx2 =
f(x) − 1

2
. Find the Fourier coefficients ĝn for all n 6= 0. (ĝ0 is a constant of

integration and is arbitrary.)

Since ĝ′′
n = −4n2π2ĝn, we have that −4n2π2ĝn = f̂n = i/2πn, so ĝn =

−i
8π3n3 .
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8. True or false? (2 points each, no partial credit, and no penalty for guess-
ing.)

a) Every standing wave on the interval [0, L], with Dirichlet boundary con-
ditions, can be written as a sum of traveling waves.

True. One can use either standing or traveling waves.

b) If R is a rotation in 3-dimensional space, then the trace of R is at least
−1.

True. The trace is 1 + 2 cos(θ), which can be anything from −1 to 3.

c) If B is a complex anti-symmetric matrix (BT = −B), then eB is unitary.

False. For instance, the exponential of
(

0 i
−i 0

)

has eigenvalues e and

e−1, and is definitely not unitary.

d) If x and y are eigenvectors of a Hermitian matrix A, then 〈x|y〉 = 0.

False. If they have the same eigenvalue, they don’t have to be orthogonal.

e) Suppose that A is a 5 × 5 matrix with determinant 0 and trace 5. If 1 is
an eigenvalue with geometric multiplicity 3 then A is diagonalizable.

True. Since the determinant is 0, one of the eigenvalues has to be 0. From
the trace, we see that the last eigenvalue is 2. Since 1 has both geometric
and algebraic multiplicity 3, and the others have geometric and algebraic
multiplicity 1, the matrix is diagonalizable.

f) If A is a 3× 5 matrix and b ∈ R3, then there are infinitely many solutions
to Ax = b.

False. There may not be any solutions. (But if there are any solutions,
there are infinitely many.)

g) If A is an m × n matrix and b ∈ Rm, then there exists a least-squares
solution to Ax = b, no matter what A and b are.

True. Least squares solutions always exist.

h) If B and D are different bases for a vector space V and L : V → V is an
operator, then [L]B and [L]D have the same eigenvalues.

True, and the eigenvectors are related by the change-of-basis matrix.
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