M346 Final Exam, December 15, 2009

1) The matrix $A=\left(\begin{array}{cccc}1 & 3 & 2 & 5 \\ 2 & -1 & 1 & -1 \\ 0 & 1 & 2 & 3 \\ 3 & 3 & 5 & 7\end{array}\right)$ row-reduces to $B=\left(\begin{array}{cccc}1 & 0 & 0 & -4 / 11 \\ 0 & 1 & 0 & 13 / 11 \\ 0 & 0 & 1 & 10 / 11 \\ 0 & 0 & 0 & 0\end{array}\right)$.
a)Find all solutions to $A \mathbf{x}=0$.

These are the same as the solutions to $B \mathbf{x}=0$, namely all multiples of $(4 / 11,-13 / 11,-10 / 11,1)^{T}$, or equivalently all multiples of $(4,-13,-10,11)^{T}$. b)Find a basis for the column space of A.

Since there are pivots in the first three columns of B, the first three columns of A for a basis. That is, the answer is $\left\{\left(\begin{array}{l}1 \\ 2 \\ 0 \\ 3\end{array}\right),\left(\begin{array}{c}3 \\ -1 \\ 1 \\ 3\end{array}\right),\left(\begin{array}{l}2 \\ 1 \\ 2 \\ 5\end{array}\right)\right\}$.
c) In $\mathbf{R}_{3}[t]$, let V be the span of the vectors $\left\{1+2 t+3 t^{3}, 3-t+t^{2}+3 t^{3}\right.$, $\left.2+t+2 t^{2}+5 t^{3}, 5-t+3 t^{2}+7 t^{3}\right\}$. What is the dimension of V ? Find a basis for V.

If you express things in coordinates with respect to the standard basis $\left\{1, t, t^{2}, t^{3}\right\}$, this becomes the same problem as (b). V is 3 -dimensional, as a basis consists of those polynomials whose coordinates are the answer to (b), namely $\left\{1+2 t+3 t^{3}, 3-t+t^{2}+3 t^{3}, 2+t+2 t+2+5 t^{3}\right\}$. Note that the answer is NOT a matrix or a list of column vectors. Those are just the coordinates of the answer, not the answer itself.
2. a) Find the eigenvalues of $\left(\begin{array}{cccc}3 & -5 & 16 & 4 \\ 0 & 3 & 11 & 0 \\ 0 & 15 & -1 & 0 \\ 0 & 4 & 1 & 2\end{array}\right)$. You do not need to find the eigenvectors.

The matrix is block triangular, with an upper left 1×1 block and a lower right 3×3 block. The 3×3 block is itself block triangular, with an upper left 2×2 piece $\left(\begin{array}{cc}3 & 11 \\ 15 & -1\end{array}\right)$ and a lower right 1×1 piece. The rows of the 2×2 piece sum to 14 , and the trace is 2 , so that piece has eigenvalues 14 and -12 , and the whole matrix has eigenvalues $3,14,-12,2$.
b) Find the eigenvalues and eigenvectors of $\left(\begin{array}{cc}3 & 8 \\ 2 & -3\end{array}\right)$.

The determinant is -25 and the trace is zero, so the eigenvalues are 5
and -5 . The eigenvectors (obtained by row reductions) are $\binom{4}{1}$ and $\binom{-1}{1}$, respectively.
3. Consider the equations

$$
\begin{aligned}
& x_{1}(n+1)=2 x_{1}(n)+3 x_{2}(n) \\
& x_{2}(n+1)=2 x_{1}(n)+x_{2}(n)
\end{aligned}
$$

a) If $\mathbf{x}(0)=\binom{1}{0}$, what is $\mathbf{x}(n)$?

Since this is an $\mathbf{x}(n+1)=A \mathbf{x}(n)$ problem, we diagonalize A and get eigenvalues 4 and -1 with eigenvectors $\mathbf{b}_{1}=\binom{3}{2}$ and $\mathbf{b}_{2}=\binom{1}{-1}$. Since $\mathbf{x}(0)=\left(\mathbf{b}_{1}+2 \mathbf{b}_{2}\right) / 5, \mathbf{x}(n)=\left(4^{n} \mathbf{b}_{1}+2(-1)^{n} \mathbf{b}_{2}\right) / 5=\frac{1}{5}\binom{3 \cdot 4^{n}+2(-1)^{n}}{2 \cdot 4^{n}-2(-1)^{n}}$.
b) If $\mathbf{x}(0)=\binom{0}{1}$, what is $\mathbf{x}(n)$?

In this instance $\mathbf{x}(0)=\left(\mathbf{b}_{1}-3 \mathbf{b}_{2}\right) / 5$, so $\mathbf{x}(n)=\left(4^{n} \mathbf{b}_{1}-3(-1)^{n} \mathbf{b}_{2}\right) / 5=$ $\frac{1}{5}\binom{3 \cdot 4^{n}-3(-1)^{n}}{2 \cdot 4^{n}+3(-1)^{n}}$.
c) Compute A^{n}, where $A=\left(\begin{array}{ll}2 & 3 \\ 2 & 1\end{array}\right)$.

You can either compute $P D^{n} P^{-1}$ or notice that the first column of A^{n} is the answer to (a) and the second column is the answer to (b). Either way, you get $A^{n}=\frac{1}{5}\left(\begin{array}{ll}3 \cdot 4^{n}+2(-1)^{n} & 3 \cdot 4^{n}-3(-1)^{n} \\ 2 \cdot 4^{n}-2(-1)^{n} & 2 \cdot 4^{n}+3(-1)^{n}\end{array}\right)$.
4. Consider the nonlinear system of differential equations

$$
\begin{aligned}
\frac{d x_{1}}{d t} & =x_{1}^{2}+x_{1} x_{2}-4 x_{1}+x_{2}+1 \\
\frac{d x_{2}}{d t} & =x_{2}^{2}+x_{1}-2 x_{2}
\end{aligned}
$$

This system of equations has a fixed point at $x_{1}=x_{2}=1$.
a) Write down a linear system of equations that approximates this nonlinear system when \mathbf{x} is close to $\binom{1}{1}$.

Defining $\mathbf{y}=\mathbf{x}-(1,1)^{T}$, we get $\frac{d \mathbf{y}}{d t} \approx A \mathbf{y}$, where

$$
A=\left.\left(\begin{array}{cc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}}
\end{array}\right)\right|_{(1,1)}=\left.\left(\begin{array}{cc}
2 x_{1}+x_{2}-4 & x_{1}+1 \\
1 & 2 x_{2}-2
\end{array}\right)\right|_{(1,1)}=\left(\begin{array}{cc}
-1 & 2 \\
1 & 0
\end{array}\right)
$$

b) Diagonalize the matrix that appears in the linear equations.

Eigenvalues -2 and 1, with eigenvectors $(-2,1)^{T}$ and $(1,1)^{T}$.
c) Identify the stable, neutrally stable, and unstable modes. What is the dominant mode, and how fast does it grow or shrink? Is the system as a whole stable, neutral, or unstable near $\binom{1}{1}$?

The $(-2,1)^{T}$ mode is stable, and shrinks as $e^{-2 t}$. The $(1,1)^{T}$ mode is unstable, and grows as e^{t}. That's the dominant mode. Since there is an unstable mode, the system is unstable.
5. Gram-Schmidt. In \mathbf{R}^{3}, consider the three vectors $\mathbf{x}_{1}=(2,1,1)^{T}$, $\mathbf{x}_{2}=$ $(5,-1,3)^{T}$ and $\mathbf{x}_{3}=(4,6,-8)^{T}$.
a) Use Gram-Schmidt to convert this basis to an orthogonal basis $\left\{\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}\right\}$.

$$
\begin{aligned}
& \mathbf{y}_{1}=\mathbf{x}_{1}=(2,1,1)^{T} . \\
& \mathbf{y}_{2}=\mathbf{x}_{2}-\frac{\left\langle\mathbf{y}_{1} \mid \mathbf{x}_{1}\right\rangle}{\left\langle\mathbf{y}_{1}\right\rangle} \mathbf{y}_{1}=\mathbf{x}_{2}-(12 / 6) \mathbf{y}_{1}=(1,-3,1)^{T} . \\
& \mathbf{y}_{3}=\mathbf{x}_{3}-\frac{\left\langle\mathbf{y}_{1} \mid \mathbf{x}_{3}\right\rangle}{\left\langle\mathbf{y}_{1} \mid \mathbf{y}_{1}\right\rangle} \mathbf{y}_{1}-\frac{\left\langle\mathbf{y}_{2} \mid \mathbf{x}_{3}\right\rangle}{\left\langle\mathbf{y}_{2} \mid \mathbf{y}_{2}\right\rangle} \mathbf{y}_{2}=\mathbf{x}_{3}-\mathbf{y}_{1}+2 \mathbf{y}_{2}=(4,-1,-7)^{T}
\end{aligned}
$$

b) Decompose the vector $(1,2,3)^{T}$ as a linear combination of the vectors in this orthogonal basis. (Warning: the answer involves fractions.)

Let $\mathbf{v}=(1,2,3)^{T}$. Since $\left\langle\mathbf{y}_{1} \mid \mathbf{v}\right\rangle=7,\left\langle\mathbf{y}_{1} \mid \mathbf{y}_{1}\right\rangle=6,\left\langle\mathbf{y}_{2} \mid \mathbf{v}\right\rangle=-2,\left\langle\mathbf{y}_{2} \mid \mathbf{y}_{2}\right\rangle=$ 11, $\left\langle\mathbf{y}_{3} \mid \mathbf{v}\right\rangle=-19,\left\langle\mathbf{y}_{3} \mid \mathbf{y}_{3}\right\rangle=66, \mathbf{v}=\frac{6}{7} \mathbf{y}_{1}-\frac{2}{11} \mathbf{y}_{2}-\frac{19}{66} \mathbf{y}_{3}$.
6. Let V be the space of functions on the interval $[0, \pi]$ with boundary conditions $f(0)=0, f(\pi)=0$.
a) Let $A=4+\frac{d^{2}}{d x^{2}}$ be an operator on V. (In other words, $(A f)(x)=$ $\left.4 f(x)+f^{\prime \prime}(x)\right)$ Find all the eigenvalues and eigenvectors of A.

We already know that the eigenvalues of $d^{2} / d x^{2}$ are $-n^{2} \pi^{2} / L^{2}=-n^{2}$ with eigenvectors $\sin (n \pi x / L)=\sin (n x)$, so the eigenvalues of A are $4-n^{2}$ with the same eigenvectors (or, if you prefer, eigenfunctions) $\sin (n x)$.
b) Consider the partial differential equation

$$
\frac{\partial^{2} f(x, t)}{\partial t^{2}}=4 f(x, t)+\frac{\partial^{2} f(x, t)}{\partial x^{2}}
$$

on $[0, \pi] \times \mathbf{R}$, and with the boundary conditions $f(0, t)=f(\pi, t)=0$ for all t. Find a solution to this equation with the initial conditions $f(x, 0)=$ $\sin (x)-5 \sin (3 x), \frac{\partial f}{\partial t}(x, 0)=3 \sin (2 x)$.

This is of the form $\frac{d^{2} \vec{f}}{d t^{2}}=A \vec{f}$, so we break things down in a basis of eigenvectors of A. The modes with $\lambda>0$ grow as $\cosh (\sqrt{\lambda} t)$ and $\sinh (\sqrt{\lambda} t)$, the modes with $\lambda=0$ go as $c_{1}+c_{2} t$, and the modes with $\lambda<0$ go as $\cos (\sqrt{-\lambda} t)$ and $\sin (\sqrt{-\lambda} t)$.

Our initial conditions only have elements in the $n=1, n=2$ and $n=3$ eigenspaces, which have positive, zero, and negative eigenvalues, and our final answer is

$$
f(x, t)=\cosh (\sqrt{3} t) \sin (x)+3 t \sin (2 x)-5 \cos (\sqrt{5} t) \sin (3 x) .
$$

7. Consider the "sawtooth function", defined by $f(x)=x$ for $0<x<1$ and with $f(x+1)=f(x)$. (This function is discontinuous when x is an integer.)
a) We write $f(x)=\sum_{n} \hat{f}_{n} \exp (2 \pi i n x)$ as a Fourier series. Find the Fourier coefficients \hat{f}_{n}.

$$
\hat{f}_{n}=\int_{0}^{1} x e^{-2 \pi i n x} d x \text {. For } n=0 \text { this equals } 1 / 2 \text {. For any other value of } n \text { we }
$$ integrate by parts, using the fact that $\int x e^{k x} d x=\frac{x e^{k x}}{k}-\int \frac{e^{k x}}{k} d x=\frac{(k x-1) e^{k x}}{k^{2}}$. Plugging in $k=2 \pi i n$ and noting that $e^{2 \pi i n x}$ equals 1 at $x=0$ and $x=1$, we get $\hat{f}_{n}=\frac{i}{2 \pi n}$ for $n \neq 0$.

b) We can also write $f(x)$ as a sum of sines and cosines: $f(x)=\frac{a_{0}}{2}+$ $\sum_{n} a_{n} \cos (2 \pi n x)+\sum_{n} b_{n} \sin (2 \pi n x)$. Find the coefficients a_{n} and b_{n}.
$a_{n}=\hat{f}_{n}+\hat{f}_{-n}$. This is 1 if $n=0$ and 0 otherwise.
$b_{n}=i \hat{f}_{n}-i \hat{f}_{-n}=-\frac{1}{n \pi}$.
c) Suppose that $g(x)$ is a periodic function that solves the equation $d^{2} g(x) / d x^{2}=$ $f(x)-\frac{1}{2}$. Find the Fourier coefficients \hat{g}_{n} for all $n \neq 0$. (\hat{g}_{0} is a constant of integration and is arbitrary.)

Since ${\hat{g^{\prime \prime}}}_{n}=-4 n^{2} \pi^{2} \hat{g}_{n}$, we have that $-4 n^{2} \pi^{2} \hat{g}_{n}=\hat{f}_{n}=i / 2 \pi n$, so $\hat{g}_{n}=$ $\frac{-i}{8 \pi^{3} n^{3}}$.
8. True or false? (2 points each, no partial credit, and no penalty for guessing.)
a) Every standing wave on the interval $[0, L]$, with Dirichlet boundary conditions, can be written as a sum of traveling waves.

True. One can use either standing or traveling waves.
b) If R is a rotation in 3 -dimensional space, then the trace of R is at least -1 .

True. The trace is $1+2 \cos (\theta)$, which can be anything from -1 to 3 .
c) If B is a complex anti-symmetric matrix $\left(B^{T}=-B\right)$, then e^{B} is unitary.

False. For instance, the exponential of $\left(\begin{array}{cc}0 & i \\ -i & 0\end{array}\right)$ has eigenvalues e and e^{-1}, and is definitely not unitary.
d) If \mathbf{x} and \mathbf{y} are eigenvectors of a Hermitian matrix A, then $\langle\mathbf{x} \mid \mathbf{y}\rangle=0$.

False. If they have the same eigenvalue, they don't have to be orthogonal.
e) Suppose that A is a 5×5 matrix with determinant 0 and trace 5 . If 1 is an eigenvalue with geometric multiplicity 3 then A is diagonalizable.

True. Since the determinant is 0 , one of the eigenvalues has to be 0 . From the trace, we see that the last eigenvalue is 2 . Since 1 has both geometric and algebraic multiplicity 3 , and the others have geometric and algebraic multiplicity 1 , the matrix is diagonalizable.
f) If A is a 3×5 matrix and $\mathbf{b} \in \mathbf{R}^{3}$, then there are infinitely many solutions to $A \mathbf{x}=\mathbf{b}$.

False. There may not be any solutions. (But if there are any solutions, there are infinitely many.)
g) If A is an $m \times n$ matrix and $\mathbf{b} \in \mathbf{R}^{m}$, then there exists a least-squares solution to $A \mathbf{x}=\mathbf{b}$, no matter what A and \mathbf{b} are.

True. Least squares solutions always exist.
h) If \mathcal{B} and \mathcal{D} are different bases for a vector space V and $L: V \rightarrow V$ is an operator, then $[L]_{\mathcal{B}}$ and $[L]_{\mathcal{D}}$ have the same eigenvalues.

True, and the eigenvectors are related by the change-of-basis matrix.

