M346 First Midterm Exam Solutions, September 18, 2009

1) In \mathbb{R}^{2}, let $\mathcal{E}=\left\{\binom{1}{0}\binom{0}{1}\right\}$ be the standard basis and let $\mathcal{B}=\left\{\binom{2}{3},\binom{5}{7}\right\}$ be an alternate basis.
a) Find $P_{\mathcal{E B}}$ and $P_{\mathcal{B E}}$.

$$
P_{\mathcal{E B}}=\left(\left[\mathbf{b}_{1}\right]_{\mathcal{E}}\left[b b_{2}\right]_{\mathcal{E}}\right)=\left(\begin{array}{ll}
2 & 5 \\
3 & 7
\end{array}\right) . P_{\mathcal{B E}}=P_{\mathcal{E B}}^{-1}=\left(\begin{array}{cc}
-7 & 5 \\
3 & -2
\end{array}\right) . \text { Here we used }
$$

the fact that $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$.
b) If $\mathbf{v}=\binom{4}{1}$, find $[\mathbf{v}]_{\mathcal{B}}$.

$$
\text { Since }[\mathbf{v}]_{\mathcal{E}}=\binom{4}{1},[\mathbf{v}]_{\mathcal{B}}=P_{\mathcal{B E}}[\mathbf{v}]_{\mathcal{E}}=\binom{-23}{10}
$$

c) Solve the system of equations: $2 x_{1}+5 x_{2}=4 ; \quad 3 x_{1}+7 x_{2}=1$.

This is the exact same problem as (b), namely writing $\binom{4}{1}$ as a linear combination of $\binom{2}{3}$ and $\binom{5}{7}$. The solution, as before, is $x_{1}=-23, x_{2}=10$. 2. In $\mathbb{R}_{1}[t]$, let $\mathcal{E}=\{1, t\}$ be the standard basis and let $\mathcal{B}=\{4+5 t, 3+4 t\}$ be an alternate basis. Let $L: \mathbb{R}_{1}[t] \rightarrow \mathbb{R}_{1}[t]$ be the linear transformation $L\left(a_{0}+a_{1} t\right)=\left(16 a_{0}-12 a_{1}\right)+\left(20 a_{0}-15 a_{1}\right) t$.
a) Find $P_{\mathcal{E B}}$ and $P_{\mathcal{B E}}$.

$$
P_{\mathcal{E B}}=\left(\begin{array}{ll}
4 & 3 \\
5 & 4
\end{array}\right), P_{\mathcal{B E}}=P_{\mathcal{E B}}^{-1}=\left(\begin{array}{cc}
4 & -3 \\
-5 & 4
\end{array}\right) .
$$

b) Find the matrix of L relative to the standard basis (that is, find $[L]_{\mathcal{E}}$).

$$
\left.[L]_{\mathcal{E}}=\left(\left[L\left(\mathbf{e}_{1}\right)\right]_{\mathcal{E}}\left[L\left(\mathbf{e}_{2}\right)\right]_{\mathcal{E}}\right)=\left(\begin{array}{ll}
16 & -12 \\
20 & -15
\end{array}\right)\right)
$$

c) Find the matrix of L relative to the basis \mathcal{B} (that is, find $[L]_{\mathcal{B}}$). [The answer to (c) is much simpler than the answer to (b) and illustrates why we use bases like \mathcal{B}.]

There are two ways to do this. We could compute $L\left(\mathbf{b}_{1}\right)=4+5 t=\mathbf{b}_{1}$, hence $\left[L\left(\mathbf{b}_{1}\right)\right]_{\mathcal{B}}=\binom{1}{0}$, and compute $L\left(\mathbf{b}_{2}\right)=0$ to conclude that $[L]_{\mathcal{B}}=$ $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$, or we could compute $P_{\mathcal{B E}}[L]_{\mathcal{E}} P_{\mathcal{E} B}$ to get the same result.
3. Let $A=\left(\begin{array}{ccccc}1 & 2 & 5 & 1 & 15 \\ 2 & 0 & 6 & 1 & 10 \\ 3 & 2 & 11 & 1 & 13 \\ 6 & 4 & 22 & 3 & 38\end{array}\right) . A$ is row-equivalent to $A_{\text {rref }}=\left(\begin{array}{ccccc}1 & 0 & 3 & 0 & -1 \\ 0 & 1 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & 12 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$.
a) Find a basis for the space of solutions to $A \mathbf{x}=0$.

Our equations are $x_{1}=-3 x_{3}+x_{5}, x_{2}=-x_{3}-2 x_{5}, x_{4}=-12 x_{5}$, and of course $x_{3}=x_{3}$ and $x_{5}=x_{5}$. In other words $\mathbf{x}=x_{3} \mathbf{b}_{1}+x_{5} \mathbf{b}_{2}$, where $\mathbf{b}_{1}=\left(\begin{array}{c}-3 \\ -1 \\ 1 \\ 0 \\ 0\end{array}\right)$ and $\mathbf{b}_{2}=\left(\begin{array}{c}1 \\ -2 \\ 0 \\ -12 \\ 1\end{array}\right)$ form a basis for our space of solutions.
b) Find a basis for the column space of A.

These are the first, second, and fourth columns of A, corresponding to the pivot columns of $A_{\text {rref }}$. That is, $\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 6\end{array}\right),\left(\begin{array}{l}2 \\ 0 \\ 2 \\ 4\end{array}\right)$, and $\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 3\end{array}\right)$. There are other possible bases, of course, but this is the one described in class and in Appendix A.
c) Let $L: \mathbb{R}_{4}[t] \rightarrow \mathbb{R}_{3}[t]$ be a linear transformation with $[L]_{\tilde{\mathcal{E}}}=A$. Here $\mathcal{E}=\left\{1, t, t^{2}, t^{3}, t^{4}\right\}$ is the standard basis for $\mathbb{R}_{4}[t]$ and $\mathcal{E}=\left\{1, t, t^{2}, t^{3}\right\}$ is the standard basis for $\mathbb{R}_{3}[t]$. Find bases for $\operatorname{Ker}(\mathrm{L})$ (the kernel of L) and Range(L).

This is essentially the same as parts (a) and (b)! A basis for the kernel of L is given by the vectors whose coordinates are the answer to (a), namely $\left\{-3-t+t^{2}, 1-2 t-12 t^{3}+t^{4}\right\}$, and a basis for the range are the vectors whose coordinates are the answer to (b), namely $\left\{1+2 t+3 t^{2}+6 t^{3}, 2+2 t^{2}+\right.$ $\left.4 t^{3}, 1+t+t^{2}+3 t^{3}\right\}$.
4. True of False? Each question is worth 4 points. You do NOT need to justify your answers, and partial credit will NOT be given.
a) If A is a matrix, then the pivot columns of $A_{\text {rref }}$ form a basis for the column space of A.

False. A basis if formed from the columns of A, not the columns of $A_{\text {rref }}$.
b) The set of solutions to $A \mathbf{x}=0$ is the same as the set of solutions to $A_{\text {rref }} \mathrm{X}=0$.

True
c) If $L: V \rightarrow V$ is an operator and \mathcal{B} and \mathcal{D} are bases for V, then $[L]_{\mathcal{B}}=$ $P_{\mathcal{D B}}[L]_{\mathcal{D}} P_{\mathcal{B D}}$.

False. You need to switch $P_{\mathcal{D B}}$ and $P_{\mathcal{B D}}$ to get the right formula.
d) If V is an n-dimensional vector space with a basis \mathcal{B}, then a set of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ in V is linearly independent if and only if the matrix $A=\left(\left[\mathbf{v}_{1}\right]_{\mathcal{B}} \ldots\left[\mathbf{v}_{k}\right]_{\mathcal{B}}\right)$ has rank k.

True. You need a pivot in each of the k columns.
e) If V is an n-dimensional vector space with a basis \mathcal{B}, then a set of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ spans V if and only if the matrix $A=\left(\left[\mathbf{v}_{1}\right]_{\mathcal{B}} \ldots\left[\mathbf{v}_{k}\right]_{\mathcal{B}}\right)$ has rank n. True. You need a pivot in each of the n rows.

