M346 Third Midterm Exam Solutions, November 20, 2009
1) Gram Schmidt:

a)(10 points) On R? with the usual inner product, Use Gram-Schmidt to
convert x; = (1,2,0)7, x, = (3,1,1)7, x3 = (4,3,-5)T to an orthogonal

basis.
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b)(15 points) On Ry[t] with the inner product (f|g) = [ f(t)g(t)dt, trans-
form {1,¢,¢*} to an orthogonal basis.
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2. a)(15 points) Find the equation of the best line through the points (1, —4),
(2,1), and (3, 2).
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)(10 points) Let V be the subspace of R? that is the span of the vectors
(1,2,3)" and (1,1,1)7. Find the point in V that is closest to (—4,1,2)7.

(_19/3>, so the best line is y = 3z — 19/3.
b



This is essentially the same problem, since the least-squares solution to
. . _1
Ax = b places Ax as close as possible to b. Our answer is A ( ??/ 3) _
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3. On C? with the usual inner product, let
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a)(5 points) Find the matrix of L:

1 ¢ —
L=10 2 1—1
T 3 1
1 1 0 —1
b)(10 points) Let x = | 10 |. Compute LT(x). Since LT = | —i 2 3
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¢)(10 points) Let V' be the space of real-valued functions on the real line,
with the inner product (flg) = [°% f(t)g(t)dt. Let A : V. — V be the
linear transformation A =t + d/dt (That is, (A(f))(t) = tf(t) + f'(t)). Let
g(t) = e /2. Compute Ag and Afg.

We saw in class that the adjoint to d/dt is —d/dt, while multiplication
by t is self-adjoint, so AT =t — d/dt. It’s then an easy calculation to get
Ag =0, Afg(t) = 2te~t/2. [Physics note: In quantum mechanics, ¢ is the
wave function of the ground state of a harmonic oscillator. The operators
A and AT are called “ladder operators”, or “raising and lowering operators”.
Al increases the energy level by one, and 2te~*/2 is the wave function for the
first excited state. A lowers the energy by one. Since there’s nothing below
the ground state, we have Ag = 0.]

4. Grab bag. These are short-answer or true/false questions. Each question

is worth 5 points. You do NOT need to justify your answers, and partial
credit will NOT be given.
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True. The matrix is Hermitian.

a) True or false? The matrix ( ) has orthogonal eigenvectors.
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True. The columns are orthonormal.

b) True or false? The matrix % ( ) is unitary.
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c) Let x(t) be the solution to ¥ = Ax, where A = 50 1 0 5 and
-3 -4 =5 0

x(0) = (5,—3,1,1)T Find the limit, as ¢ — oo, of |x(¢)|. (This has a quick
and easy solution, and you do NOT have to diagonalize A!)

Since A is anti-symmetric, e4? is orthogonal, so x(t) = e*x(0) has the
same length as x, namely 6.
d) True or false? If a matrix M satisfies M = M7, then the eigenvalues of
M are real.

False. Some of the matrix elements of M may be complex, in which case
M won’t be Hermitian. (E.g., M could be ¢ times the identity)

e) True or false? If a matrix is unitary, then it is not Hermitian.

False. The identity matrix is both Hermitian and unitary. More generally,
any diagonalizable matrix with orthogonal eigenvectors and who eigenvalues
are 1 and -1 is both Hermitian and unitary.



