M346 Third Midterm Exam Solutions, November 20, 2009

1) Gram Schmidt:
a)(10 points) On \mathbb{R}^{3} with the usual inner product, Use Gram-Schmidt to convert $\mathbf{x}_{1}=(1,2,0)^{T}, \mathbf{x}_{2}=(3,1,1)^{T}, \mathbf{x}_{3}=(4,3,-5)^{T}$ to an orthogonal basis.

$$
\begin{gathered}
\mathbf{y}_{1}=\mathbf{x}_{1}=\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right) \\
\mathbf{y}_{2}=\mathbf{x}_{2}-\frac{\left\langle\mathbf{y}_{1} \mid \mathbf{x}_{2}\right\rangle}{\left\langle\mathbf{y}_{1} \mid \mathbf{y}_{1}\right\rangle} \mathbf{y}_{1}=\left(\begin{array}{l}
3 \\
1 \\
1
\end{array}\right)-\frac{5}{5}\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)=\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right) \\
\mathbf{y}_{3}=\mathbf{x}_{3}-\frac{\left\langle\mathbf{y}_{1} \mid \mathbf{x}_{3}\right\rangle}{\left\langle\mathbf{y}_{1} \mid \mathbf{y}_{1}\right\rangle} \mathbf{y}_{1}-\frac{\left\langle\mathbf{y}_{2} \mid \mathbf{x}_{3}\right\rangle}{\left\langle\mathbf{y}_{2} \mid \mathbf{y}_{2}\right\rangle} \mathbf{y}_{2}=\left(\begin{array}{c}
4 \\
3 \\
-5
\end{array}\right)-\frac{10}{5}\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)-\frac{0}{6}\left(\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right)=\left(\begin{array}{c}
2 \\
-1 \\
-5
\end{array}\right)
\end{gathered}
$$

b) (15 points) On $\mathbb{R}_{2}[t]$ with the inner product $\langle f \mid g\rangle=\int_{0}^{2} f(t) g(t) d t$, transform $\left\{1, t, t^{2}\right\}$ to an orthogonal basis.

$$
\begin{gathered}
\mathbf{y}_{1}=\mathbf{x}_{1}=1 \\
\mathbf{y}_{2}=\mathbf{x}_{2}-\frac{\int_{0}^{2} t d t}{\int_{0}^{2} 1 d t} \mathbf{y}_{1}=t-1 \\
\mathbf{y}_{3}=\mathbf{x}_{3}-\frac{\int_{0}^{2} t^{2} d t}{\int_{0}^{2} 1 d t} \mathbf{y}_{1}-\frac{\int_{0}^{2} t^{2}(t-1) d t}{\int_{0}^{2}(t-1)^{2} d t} \mathbf{y}_{2}=t^{2}-\frac{4}{3}-2(t-1)=t^{2}-2 t+\frac{2}{3}
\end{gathered}
$$

2. a)(15 points) Find the equation of the best line through the points $(1,-4)$, $(2,1)$, and $(3,2)$.

$$
A=\left(\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 3
\end{array}\right), A^{T} A=\left(\begin{array}{cc}
3 & 6 \\
6 & 14
\end{array}\right), A^{T} \mathbf{b}=\binom{-1}{4} \text {, and }\binom{c_{0}}{c_{1}}=\left(A^{T} A\right)^{-1}\left(A^{T} \mathbf{b}\right)=
$$

$\binom{-19 / 3}{3}$, so the best line is $y=3 x-19 / 3$.
b) (10 points) Let V be the subspace of \mathbb{R}^{3} that is the span of the vectors $(1,2,3)^{T}$ and $(1,1,1)^{T}$. Find the point in V that is closest to $(-4,1,2)^{T}$.

This is essentially the same problem, since the least-squares solution to $A \mathbf{x}=\mathbf{b}$ places $A \mathbf{x}$ as close as possible to \mathbf{b}. Our answer is $A\binom{-19 / 3}{3}=$ $\left(\begin{array}{c}-10 / 3 \\ -1 / 3 \\ 8 / 3\end{array}\right)$.
3. On \mathbb{C}^{3} with the usual inner product, let

$$
L\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
x_{1}+i x_{2}-i x_{3} \\
2 x_{2}+(1-i) x_{3} \\
i x_{1}+3 x_{2}+x_{3}
\end{array}\right)
$$

a) (5 points) Find the matrix of L :

$$
L=\left(\begin{array}{ccc}
1 & i & -i \\
0 & 2 & 1-i \\
i & 3 & 1
\end{array}\right)
$$

b) (10 points) Let $\mathbf{x}=\left(\begin{array}{c}1 \\ 10 \\ 100\end{array}\right)$. Compute $L^{\dagger}(\mathbf{x})$. Since $L^{\dagger}=\left(\begin{array}{ccc}1 & 0 & -i \\ -i & 2 & 3 \\ 1 & i+1 & 1\end{array}\right)$,
$L^{\dagger} \mathbf{x}=\left(\begin{array}{c}1-100 i \\ 320-i \\ 110+11 i\end{array}\right)$.
c)(10 points) Let V be the space of real-valued functions on the real line, with the inner product $\langle f \mid g\rangle=\int_{-\infty}^{\infty} f(t) g(t) d t$. Let $A: V \rightarrow V$ be the linear transformation $A=t+d / d t$ (That is, $\left.(A(f))(t)=t f(t)+f^{\prime}(t)\right)$. Let $g(t)=e^{-t^{2} / 2}$. Compute $A g$ and $A^{\dagger} g$.

We saw in class that the adjoint to $d / d t$ is $-d / d t$, while multiplication by t is self-adjoint, so $A^{\dagger}=t-d / d t$. It's then an easy calculation to get $A g=0, A^{\dagger} g(t)=2 t e^{-t^{2} / 2}$. [Physics note: In quantum mechanics, g is the wave function of the ground state of a harmonic oscillator. The operators A and A^{\dagger} are called "ladder operators", or "raising and lowering operators". A^{\dagger} increases the energy level by one, and $2 t e^{-t^{2} / 2}$ is the wave function for the first excited state. A lowers the energy by one. Since there's nothing below the ground state, we have $A g=0$.]
4. Grab bag. These are short-answer or true/false questions. Each question is worth 5 points. You do NOT need to justify your answers, and partial credit will NOT be given.
a) True or false? The matrix $\left(\begin{array}{cc}5 & 4 i \\ -4 i & -1\end{array}\right)$ has orthogonal eigenvectors.

True. The matrix is Hermitian.
b) True or false? The matrix $\frac{1}{\sqrt{7}}\left(\begin{array}{cc}2-i & -1+i \\ 1+i & 2+i\end{array}\right)$ is unitary.

True. The columns are orthonormal.
c) Let $\mathbf{x}(t)$ be the solution to $\frac{d \mathbf{x}}{d t}=A \mathbf{x}$, where $A=\left(\begin{array}{cccc}0 & 1 & 2 & 3 \\ -1 & 0 & -1 & 4 \\ -2 & 1 & 0 & 5 \\ -3 & -4 & -5 & 0\end{array}\right)$ and $\mathbf{x}(0)=(5,-3,1,1)^{T}$ Find the limit, as $t \rightarrow \infty$, of $|\mathbf{x}(t)|$. (This has a quick and easy solution, and you do NOT have to diagonalize A !)

Since A is anti-symmetric, $e^{A t}$ is orthogonal, so $\mathbf{x}(t)=e^{A t} \mathbf{x}(0)$ has the same length as \mathbf{x}, namely 6 .
d) True or false? If a matrix M satisfies $M=M^{T}$, then the eigenvalues of M are real.

False. Some of the matrix elements of M may be complex, in which case M won't be Hermitian. (E.g., M could be i times the identity)
e) True or false? If a matrix is unitary, then it is not Hermitian.

False. The identity matrix is both Hermitian and unitary. More generally, any diagonalizable matrix with orthogonal eigenvectors and who eigenvalues are 1 and -1 is both Hermitian and unitary.

