M346 First Midterm Exam, September 18, 2009

- 1) In \mathbb{R}^2 , let $\mathcal{E} = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$ be the standard basis and let $\mathcal{B} = \left\{ \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 5 \\ 7 \end{pmatrix} \right\}$ be an alternate basis.
- a) Find $P_{\mathcal{E}\mathcal{B}}$ and $P_{\mathcal{B}\mathcal{E}}$.
- b) If $\mathbf{v} = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$, find $[\mathbf{v}]_{\mathcal{B}}$.
- c) Solve the system of equations: $2x_1 + 5x_2 = 4$; $3x_1 + 7x_2 = 1$.
- 2. In $\mathbb{R}_1[t]$, let $\mathcal{E} = \{1, t\}$ be the standard basis and let $\mathcal{B} = \{4 + 5t, 3 + 4t\}$ be an alternate basis. Let $L : \mathbb{R}_1[t] \to \mathbb{R}_1[t]$ be the linear transformation $L(a_0 + a_1 t) = (16a_0 12a_1) + (20a_0 15a_1)t$.
- a) Find $P_{\mathcal{E}\mathcal{B}}$ and $P_{\mathcal{B}\mathcal{E}}$.
- b) Find the matrix of L relative to the standard basis (that is, find $[L]_{\mathcal{E}}$).
- c) Find the matrix of L relative to the basis \mathcal{B} (that is, find $[L]_{\mathcal{B}}$).

[The answer to (c) is much simpler than the answer to (b) and illustrates why we use bases like \mathcal{B} .]

$$3. \text{ Let } A = \begin{pmatrix} 1 & 2 & 5 & 1 & 15 \\ 2 & 0 & 6 & 1 & 10 \\ 3 & 2 & 11 & 1 & 13 \\ 6 & 4 & 22 & 3 & 38 \end{pmatrix}. \text{ } A \text{ is row-equivalent to } A_{rref} = \begin{pmatrix} 1 & 0 & 3 & 0 & -1 \\ 0 & 1 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & 12 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

- a) Find a basis for the space of solutions to $A\mathbf{x} = 0$.
- b) Find a basis for the column space of A.
- c) Let $L:\mathbb{R}_4[t] \to \mathbb{R}_3[t]$ be a linear transformation with $[L]_{\tilde{\mathcal{E}}\mathcal{E}} = A$. Here $\mathcal{E} = \{1, t, t^2, t^3, t^4\}$ is the standard basis for $\mathbb{R}_4[t]$ and $\tilde{\mathcal{E}} = \{1, t, t^2, t^3\}$ is the standard basis for $\mathbb{R}_3[t]$. Find bases for Ker(L) (the kernel of L) and Range(L).
- 4. True of False? Each question is worth 4 points. You do NOT need to justify your answers, and partial credit will NOT be given.
- a) If A is a matrix, then the pivot columns of A_{rref} form a basis for the column space of A.
- b) The set of solutions to $A\mathbf{x} = 0$ is the same as the set of solutions to $A_{rref}\mathbf{x} = 0$.
- c) If $L: V \to V$ is an operator and \mathcal{B} and \mathcal{D} are bases for V, then $[L]_{\mathcal{B}} = P_{\mathcal{D}\mathcal{B}}[L]_{\mathcal{D}}P_{\mathcal{B}\mathcal{D}}$.

- d) If V is an n-dimensional vector space with a basis \mathcal{B} , then a set of vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ in V is linearly independent if and only if the matrix $A = ([\mathbf{v}_1]_{\mathcal{B}} \ldots [\mathbf{v}_k]_{\mathcal{B}})$ has rank k.
- e) If V is an n-dimensional vector space with a basis \mathcal{B} , then a set of vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ spans V if and only if the matrix $A = ([\mathbf{v}_1]_{\mathcal{B}} \ldots [\mathbf{v}_k]_{\mathcal{B}})$ has rank n.