M346 First Midterm Exam, September 18, 2009

1) In \mathbb{R}^{2}, let $\mathcal{E}=\left\{\binom{1}{0}\binom{0}{1}\right\}$ be the standard basis and let $\mathcal{B}=\left\{\binom{2}{3},\binom{5}{7}\right\}$ be an alternate basis.
a) Find $P_{\mathcal{E B}}$ and $P_{\mathcal{B E}}$.
b) If $\mathbf{v}=\binom{4}{1}$, find $[\mathbf{v}]_{\mathcal{B}}$.
c) Solve the system of equations: $2 x_{1}+5 x_{2}=4 ; \quad 3 x_{1}+7 x_{2}=1$.
2. In $\mathbb{R}_{1}[t]$, let $\mathcal{E}=\{1, t\}$ be the standard basis and let $\mathcal{B}=\{4+5 t, 3+4 t\}$ be an alternate basis. Let $L: \mathbb{R}_{1}[t] \rightarrow \mathbb{R}_{1}[t]$ be the linear transformation $L\left(a_{0}+a_{1} t\right)=\left(16 a_{0}-12 a_{1}\right)+\left(20 a_{0}-15 a_{1}\right) t$.
a) Find $P_{\mathcal{E B}}$ and $P_{\mathcal{B E}}$.
b) Find the matrix of L relative to the standard basis (that is, find $[L]_{\mathcal{E}}$).
c) Find the matrix of L relative to the basis \mathcal{B} (that is, find $[L]_{\mathcal{B}}$).
[The answer to (c) is much simpler than the answer to (b) and illustrates why we use bases like \mathcal{B}.]
3. Let $A=\left(\begin{array}{ccccc}1 & 2 & 5 & 1 & 15 \\ 2 & 0 & 6 & 1 & 10 \\ 3 & 2 & 11 & 1 & 13 \\ 6 & 4 & 22 & 3 & 38\end{array}\right)$. A is row-equivalent to $A_{\text {rref }}=\left(\begin{array}{ccccc}1 & 0 & 3 & 0 & -1 \\ 0 & 1 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & 12 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$.
a) Find a basis for the space of solutions to $A \mathrm{x}=0$.
b) Find a basis for the column space of A.
c) Let $L: \mathbb{R}_{4}[t] \rightarrow \mathbb{R}_{3}[t]$ be a linear transformation with $[L]_{\tilde{\mathcal{E}} \mathcal{E}}=A$. Here $\mathcal{E}=\left\{1, t, t^{2}, t^{3}, t^{4}\right\}$ is the standard basis for $\mathbb{R}_{4}[t]$ and $\tilde{\mathcal{E}}=\left\{1, t, t^{2}, t^{3}\right\}$ is the standard basis for $\mathbb{R}_{3}[t]$. Find bases for $\operatorname{Ker}(\mathrm{L})$ (the kernel of L) and Range(L).
4. True of False? Each question is worth 4 points. You do NOT need to justify your answers, and partial credit will NOT be given.
a) If A is a matrix, then the pivot columns of $A_{\text {rref }}$ form a basis for the column space of A.
b) The set of solutions to $A \mathbf{x}=0$ is the same as the set of solutions to $A_{\text {rref }} \mathrm{X}=0$.
c) If $L: V \rightarrow V$ is an operator and \mathcal{B} and \mathcal{D} are bases for V, then $[L]_{\mathcal{B}}=$ $P_{\mathcal{D B}}[L]_{\mathcal{D}} P_{\mathcal{B D}}$.
d) If V is an n-dimensional vector space with a basis \mathcal{B}, then a set of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ in V is linearly independent if and only if the matrix $A=\left(\left[\mathbf{v}_{1}\right]_{\mathcal{B}} \ldots\left[\mathbf{v}_{k}\right]_{\mathcal{B}}\right)$ has rank k.
e) If V is an n-dimensional vector space with a basis \mathcal{B}, then a set of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ spans V if and only if the matrix $A=\left(\left[\mathbf{v}_{1}\right]_{\mathcal{B}} \ldots\left[\mathbf{v}_{k}\right]_{\mathcal{B}}\right)$ has rank n.
